Posts in category onmogelijkheden

Loterijen? Eerder de Lotto.

Gisteren, in het stuk over bijna-disjuncte families, heb ik het niet over de loterijen gehad waar het in stuk in NewScientist over ging. Sommige mensen waren benieuwd naar die metafoor voor het resultaat in het artikel van David Schrittesser en Asger Törnquist. Ik doe hier een poging zo’n loterij te beschrijven. Ik laat het aan de lezer om te beoordelen welke uitleg beter is: de feitelijke in de vorige post of de metaforische hieronder.

Om te beginnen: `loterij’ is eigenlijk een verkeerde vertaling van het Amerikaanse `lottery’. Bij een loterij koop je een lot en weet je niet wat je lotnummer zal zijn. In een lottery kies je zelf de getallen op je kaartje. Het is dus eerder te vergelijken met onze Lotto. De beschrijving van de `loterij’ in NewScientist is ook eerder die van een variant op de Lotto dan op de Staatsloterij.

Een oneindige variant op de Lotto

In plaats van 6 uit 45 kiezen we getallen uit N. Met de betekenis van het woord `bijna’ van gisteren in gedachten leggen we vast dat we niet `bijna niets’ en ook niet `bijna alles’ mogen kiezen: we moeten er oneindig veel kiezen (aankruisen) en we moeten er oneindig veel niet aankruisen.

Een `formulier’ heeft dus oneindig lange kolommen (net zo lang als N) en oneindig veel kolommen. Je mag dus, kennelijk, oneindig veel kolommen invullen. Wat in het stuk niet duidelijk vermeld wordt is hoe je een prijs kunt winnen.

Maar met het artikel in de hand kunnen we wel wat regels opstellen. Het artikel bewijst namelijk dat oneindige maximale bijna-disjuncte families niet bestaan (dat `oneindige’ heb ik gisteren voor het gemak weggelaten maar dat wordt nu belangrijk); het stukje zegt dat er geen winnende formulieren bestaan. Conclusie: een (zeker) winnend formulier heeft in de kolommen een oneindige maximale bijna-disjuncte familie.
Daaruit concluderen we dan dat een winnende kolom een oneindige doorsnede heeft met de getrokken deelverzameling van N.

We halen hier ook nog wat voorwaarden uit waaraan een geldig formulier aan moet voldoen: niet alleen mag je in één kolom niet bijna alle getallen aankruisen, ook mag je er niet voor zorgen dat je over een eindig aantal kolommen bijna alle getallen aankruist. Als je bijvoorbeeld over tien kolommen achtereenvolgens de tienvouden, tienvouden-plus-1, … tienvouden-plus-9 aankruist win je ook zeker; die tien verzamelingen vormen een eindige maximale bijna-disjuncte familie.

Samengevat: op je formulier kruis je in een aantal kolommen telkens oneindig veel getallen aan. Dat aantal kolommen mag eindig zijn maar hoe dan ook: in elke eindige greep kolommen mag je nooit samen bijna alle getallen aankruisen. Je wint als je in ten minste één kolom oneindig veel getrokken getallen hebt aangekruist.
Door je kolommen bijna-disjunct in te vullen spreid je je inzet het zuinigst; twee kolommen met een oneindige doorsnede hebben een grote overlap aan mogelijkheden. Ten slotte: als je kolommen een maximale bijna-disjuncte familie vormen dan bevat je formulier, per definitie, een winnende kolom.

Het bestaan van (zuinige) winnende formulieren

Het stuk in NewScientist vertelt niet de hele waarheid. De suggestie wordt gewekt dat winnende formulieren niet bestaan. Dat is slechts voor de helft waar. Je kunt bewijzen dat zeker winnende en zuinige formulieren bestaan, met behulp van het Lemma van Zorn (een equivalent van het Keuzeaxioma).
Sommige wiskundigen vragen zich in dit soort situaties af of het Lemma van Zorn wel nodig is bij zo’n concrete vraag; dat Lemma levert namelijk nogal zwaar geschut. En dat is nu wat David Schrittesser en Asger Törnquist hebben vastgesteld: je hebt zwaar geschut nodig; er is bestaat een situatie waarin dat zware geschut niet voorhanden is en waarin geen enkele maximale bijna-disjuncte familie bestaat.

Loterijen? Nou, nee.

Vanochtend (2019-09-19) vond ik via twitter dit artikel uit NewScientist (een vrij letterlijke vertaling van dit stuk. Nadat ik het verhaal over niet-bestaande oneindige loterijen had gelezen was ik nog niets wijzer geworden. Na doorklikken naar het originele artikel zag ik dat ik het al eerder had gezien in april, op ArXiV.org en dat het niets met loterijen te maken had.

Maar waar gaat het artikel dan wel over? Over bijna-disjuncte families. En wat zijn dat nu weer?

Eén van mijn favoriete objecten in de verzamelingenleer is de familie van alle deelverzamelingen van de verzameling N der natuurlijke getallen. Dit is een nimmer opdrogende bron van vragen en resultaten die in veel delen van de wiskunde gebruikt worden maar die gewoon ook leuk zijn om aan te werken.
Hierbij is het bijwoord `bijna’ bijna niet te vermijden. In het artikel waar we het hier over hebben past men `bijna’ dus toe op `disjunct’. Nu noemen we twee verzamelingen A en B `disjunct’ als hun doorsnede leeg is, A∩B=∅, als er geen x is die zowel in A als in B zit.
Het woord `bijna’ kort eigenlijk het wat uitgebreidere `op eindig veel na’ af: twee verzamelingen zijn bijna disjunct als hun doorsnede eindig is — `hun doorsnede is op eindig veel elementen na leeg’. Hierbij eisen we wel dat de verzamelingen zelf oneindig zijn want anders is bijna-disjunctheid niet zo spannend.

De twee verzamelingen E en O van respectievelijk de even en oneven getallen zijn disjunct; er is geen natuurlijk getal van tegelijk even en oneven is.
Hier is een mooie truc, van Sierpinski uit 1928: voor elk positief irrationaal getal x en voor elk natuurlijk getal n doen we het volgende: bepaal n×x, neem het gehele deel [n×x] (gooi alles achter de komma weg) en deel dat weer door n.
Bij vaste x krijg je zo een rij rationale getallen: [x], [2x]/2, [3x]/3, [4x]/4, … Bij π bijvoorbeeld krijgen we zo 3, 3, 3, 3, 3, 3, 3, 25/8, 28/9, 31/10, 34/11, 37/12, …
Uit de definitie van de rij volgt dat 0<x-[n×x]/n<1/n voor alle n en dit betekent iets voor de bijbehorende verzamelingen termen. Bij elke x stoppen we de termen van de rij in de verzameling Sx, dus Sπ={3, 25/8, 28/9, 31/10, 34/11, 37/12, …}.
Neem nu eens twee irrationale getallen x en y met x<y; dan geldt voor n>1/(y-x) dat [n×y]/n>y-1/n>x, en dus zit [n×y]/n niet in Sx. We concluderen dat de verzamelingen Sx en Sy bijna disjunct zijn.
De verzamelingen Sx vormen het soort familie waar het artikel over gaat: een bijna-disjuncte familie, elk tweetal elementen is bijna disjunct (en elke Sx heeft oneindig veel elementen).

Het voorbeeld van Sierpinski laat zien dat er een groot verschil is tussen `disjunct’ en `bijna disjunct’. Als een familie disjunct is dan zit elk punt in ten hoogste één element van de familie. De bijna-disjuncte familie van Sierpinski bestaat uit verzamelingen rationale getallen, daar zijn er evenveel van als natuurlijke getallen. De familie zelf heeft evenveel elementen als er positieve irrationale getallen en dat zijn er veel en veel meer als er natuurlijke getallen zijn (en dat is allemaal precies te maken). Dat zorgt er voor dat veel van de rationale getallen in meer dan één verzameling Sx zitten.

Maar goed, terug naar het artikel. Het hoofdresultaat zegt iets over de aard van bijna-disjuncte families deelverzamelingen van N: onder bepaalde omstandigheden is er geen maximale bijna-disjuncte familie. Als je zo’n familie hebt kun je er een oneindige deelverzameling van N bij doen zó dat de grotere familie ook bijna-disjunct is (en nog één, en nog één, …).
Wat dit nou met loterijen te maken heeft? Ik zou willen zeggen dat ik geen idee heb maar dat heb ik wel. Ik vind de vergelijking echter zó vergezocht dat ik de lezer er niet mee lastig wil vallen. En ik denk eigenlijk dat de uitleg van die vergelijking lastiger is dan die van het resultaat zelf.

Machine Learning and the Continuum Hypothesis

Not even Machine Learning is safe from Set Theory, or so it seems. On the website of the journal Nature there is an article about a paper in Nature Machine Intelligence that connects a certain kind of learnability to the Continuum Hypothesis. The conclusion of the paper is that certain abstract learnability questions are undecidable on the basis of the normal ZFC axioms of Set Theory.

The article tries to explain what is going on but seems to confuse two disparate things: Gödel’s (First) Incompleteness Theorem on the one hand and the undecidability of the Continuum Hypothesis on the other hand.
The first is a very general statement about first-order theories; it states that for every theory that satisfies a number of technical conditions there are statements that have no formal proof and neither do their negations. Elementary number theory is subject to this theorem, as is ZFC Set Theory.
The second is a Set-theoretical statement for which we can prove that there is no formal proof, nor for its negation. It is also more interesting than Gödel’s statements; the latter `simply’ assert their own unprovability, whereas the Continuum Hypothesis is a fundamental statement/question about the set of real numbers.

The confusion manifests itself when the Continuum Hypothesis is called a paradox. It is not. The statements from the Incompleteness Theorem on the other hand are usually likened to the Liar Paradox in that “This formula if unprovable” looks a lot like the paradox that is “This sentence is false”.

The paper itself also alludes to the Incompleteness Theorem; it even states that is used in the argument. It is not. No use is made of Gödel’s abstract unprovable sentences.

The Set Theory

So, what is the Set Theory in the paper? The learnability question is shown to be equivalent to the existence of a natural number m and a map η from the family of m-element subsets of [0,1] to the family F of finite subsets of [0,1] that satisfies the following condition: if A is a subset of [0,1] with m+1 elements then it has a subset B with m elements such that η(B) contains A.

The main theorem of the paper states that an arbitrary set X admits such a map with m=k+1 if and only if X has cardinality at most ℵk.

If the Continuum Hypothesis holds then [0,1] has cardinality ℵ1, hence there is a map as required with m=2. More generally there is a map as required if the cardinality of [0,1] is equal to ℵk for some natural number k. These possibilities do not lead to contradictions, hence neither does the learnability statement. On the other hand, the statement that the cardinality of [0,1] is larger than all these ℵk does not lead to contradictions either, hence neither does the negation of the learnability statement.

The derivation of the main statement parallells that of the main result of the paper Sur une caractérisation des alephs by Kuratowski from 1951: a set X has cardinality at most ℵk if and only if its power Xk+2 can be written as the union of k+2 sets A1, …, Ak+2 such that for every i and every point (x1,…,xk+2) in the power the set of points y in Ai that satisfy yj=xj for j≠i is finite; in Kuratowski’s words “Ai is finite in the direction of the ith axis”.
Indeed one can even construct of a map η for m=k+1 from this decomposition of the canonical set ωk of cardinality ℵk.
For notational simplicity we take k=2, so m=3, and ω24 has a decomposition into four sets A1, A2, A3, and A4. Given a subset F of ω2 of 3 elements enumerate it in increasing order: x1<x2<x3. The set η(F) will consist of F itself together with

  • all x for which (x,x1,x2,x3) belongs to A1,
  • all x for which (x1,x,x2,x3) belongs to A2,
  • all x for which (x1,x2,x,x3) belongs to A3,
  • all x for which (x1,x2,x3,x) belongs to A4

To see that this works let G be a four-element subset of ω2, enumerate it as y1<y2<y3<y4. Then (y1,y2,y3,y4) belongs to one of the four sets, say it belongs to A2; then G is a subset of η({y1,y3,y4}): the point y2 is included in the second line in the list above.

Note. The proof of the main theorem (Theorem 1) of the paper is not quite correct: it fails for k=1 for example as one encounters the cardinal number ℵ-1. Worse: in that case the ordering <1 seems to have order type ω1 and ω0 simultaneously. All this can be repaired with a better write-up.

Het vlak kleuren

Vorige maand (april 2018) is er een stap gezet op weg naar de oplossing van het volgende probleem: “hoeveel kleuren heb je nodig om de punten van het vlak te kleuren en wel zo dat punten op afstand 1 verschillende kleuren krijgen. De titel van het artikel in de Volkskrant is misleidend want het probleem is nog niet opgelost; de titel van het stuk in NRC is correct.

Beide stukken waren niet zo duidelijk als men wellicht hoopte, getuige bijvoorbeeld de commentaren in de facebookgroep ‘Leraar Wiskunde’. De opmerkingen over de voorbeelden in de Volkskrant werden niet altijd begrepen en de pixelmetafoor in NRC leidde tot misverstanden over de aard van het probleem.

Wat bekend was over het probleem tot vorige maand was het volgende. Door middel van een betegeling van het vlak met behulp van regelmatige zeshoeken met diameter 1 kun je een kleuring met zeven kleuren maken. Hierbij moet je wel precies zijn: bij elke zeshoek neem je de randpunten van zes uur tot twaalf uur mee (inclusief zes uur exclusief twaalf uur) en laat je de andere randpunten weg. Elke tegel krijg namelijk een kleur en op deze manier vermijdt je dat randpunten op afstand 1 dezelfde kleur krijgen.

De voorbeelden in het NRC-artikel zijn duidelijk: als je de punten van het vlak met twee kleuren kleurt dan zijn er in een gelijkzijdige driehoek met zijden 1 al twee punten met dezelfde kleur. Daarnaast is er een configuratie van zeven punten te zien waarvoor bij elke kleuring met drie kleuren twee punten met afstand 1 zijn die dezelfde kleur krijgen.

Het nieuwe is een configuratie van 1581 punten, gevonden door Aubrey de Grey waarin hetzelfde geldt, maar nu voor vier kleuren; dus, hoe je die punten ook kleurt met vier kleuren er zullen er altijd twee zijn met afstand 1 en dezelfde kleur. Inmiddels is 1581 teruggebracht tot 633.

De pixelmetafoor uit NRC leidde tot een onderschatting van het probleem; dat kwam door een subtiel verschil tussen pixels en de punten van het vlak: in tegenstelling tot pixels hebben punten in het vlak geen directe buren en geen oppervlakte, ook zijn ze niet vierkant. De echte formulering van het probleem vraagt naar het kleinste natuurlijke getal n met de eigenschap dat er een functie van het vlak naar {1,2,…,n} is met de eigenschap dat als d(x,y)=1 dan f(x)≠f(y). Daar komt geen verf of kwast aan te pas en de vorm of oppervlakte van een punt is ook niet van belang.

Achter de voorbeelden die laten zien dat een bepaald aantal kleuren niet volstaat zit een stelling van De Bruijn en Erdös: als elke eindige deelverzameling van het vlak een goede kleuring met k kleuren toelaat dan laat het vlak ook een goede kleuring toe. Met andere woorden: om te laten zien dat er geen goede kleuring is moet je een eindige verzameling zonder goede kleuring vinden.

Overigens zou dit nog tot twee verschillende oplossingen van het probleem kunnen leiden: de stelling van De Bruijn en Erdös geldt onder aanname van het keuzeaxioma. In dit artikel van Shelah en Soifer is te lezen dat de aard van de gevraagde functie het antwoord kan beïnvloeden. Lang voor het werk van De Grey was bekend dat een Lebesgue-meetbare kleuring ten minste vijf kleuren zou vergen. NB de laatste stelling in het artikel van Shelah en Soifer is nu achterhaald.

Ten slotte: houd de Wikipediapagina over dit probleem in de gaten.

Toevoeging (2018-05-14): het hieronder in een reactie genoemde artikel op Kennislink is ook zeer informatief.

On this day in 1873, II

A little over a week ago I wrote about a letter from Cantor to Dedekind that contained an auspicious question, namely whether the sets of natural and (positive) real numbers could be put into one-to-one correspondence with each other.

On 7 December 1873 Cantor wrote Dedekind with the answer to his question; the answer was (and still is) “no”. The letter contains a proof of the impossibility of a one-to-one correspondence between the two sets.
This was the first time that something like this was done: attempt to compare two infinite entities by pairing off the elements of the sets such that every element of the first was paired with exactly one from the second and vice versa.

Cantor went on to study this idea in depth and he showed how to give a precise meaning to the idea that one set has (strictly) more (or fewer) elements than another set.
To get back to the original question: it is clear that there are at least as many real numbers as there are natural numbers as the latter set is a subset of the former. Cantor’s proof showed that there are strictly more real numbers than there are natural numbers.
There is a difference between this situation and the one mentioned in Cantor’s letter of 29 November, 1873: he mentioned that the natural numbers also form a subset of the positive rational numbers (all fractions of the form p/q with natural numbers p and q). Thus, it seems that there are more such rational numbers than that there are natural numbers. But, we can pair off the members of both sets in such a way that to one member of one set corresponds exactly one member of the other set.
To see this divide the fractions into groups: put fraction p/q into group n if p+q=n. Now observe that group n contains exactly n-1 fractions: 1/(n-1), 2/(n-2), …, (n-1)/1. This makes it easy to arrange the fractions in a nice simple sequence: first group 2, then group 3, then group 4, and so on and inside each group arrange the fractions according to their numerators, as we did above in group n.
The resulting sequence looks like this: 1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, … and this makes it easy to pair off the natural numbers and the positive fractions as desired.

Exercise Try to devise a formula for the number that goes with the fraction p/q, or, conversely, concoct a formula that tells us what the nth fraction is.

Exercise What would you do if you had to pair off the natural numbers and the positive rational numbers (one rational number corresponds to many fractions).

Here you can read Cantor’s letter in German. It is a scan from Briefwechsel Cantor-Dedekind. And here you can read my translation into English.

Kwadratuur van de cirkel, II

Vorige keer hebben we bekeken wat `Kwadratuur van de Cirkel’ inhoudt in het kader van Euclidische Meetkunde. We hebben ook gezien dat kwadratuur van de cirkel niet mogelijk is met een passer en een latje. Deze keer gaan we bekijken of er andere manieren zijn om die kwadratuur uit te voeren.

Banach en Tarski

In het begin van de twintigste eeuw rees de behoefte om aan steeds meer deelverzamelingen van de getallenlijn, het vlak, en de ruimte respectievelijk een `lengte’, `oppervlakte’ of `volume’ toe te kennen. Om enige afstand tot de concrete meetkunde te bewaren begon men het woord `maat’ te gebruiken en de eerste die een goede definitie van `maat’ formuleerde was Lebesgue, in 1908.
Later is dit door anderen in zijn volle algemeenheid uitgewerkt maar in de bovengenoemde drie gevallen gebruiken we de Lebesgue-maat nog vrijwel zo als Lebesgue hem gedefinieerd heeft.
Voor bekende meetkundige figuren geeft de Lebesgue-maat de reeds bekende waarde maar voor willekeurige verzamelingen gaat het niet altijd even goed.

Een extreem voorbeeld hiervan werd gegeven door de Polen Banach en Tarski. Voortbouwend op werk van Hausdorff lieten ze zien dat men een massieve bol met straal 1 in eindig veel (vijf is genoeg) deelverzamelingen kan verdelen, en dat men daarna die eindig veel stukken in elkaar kan schuiven tot twee massieve bollen van straal 1. Wie met het artikel van Banch en Tarski in de hand nu een wonderbaarlijke vermenigvuldiging van één sinaasappel tot twee sinaasappels wil uitvoeren komt bedrogen uit.
De bollen zijn ideale wiskundige bollen, geen fysieke sinaasappels. En, en daar was het Banach en Tarski om te doen, de stukken waarin ze de bol verdeelden zijn zo lelijk dat er op geen enkele manier een maat aan toe te kennen is. Immers als dat wel mogelijk was dan zou 1+1=1 bewezen zijn.

Terug naar het vlak

De vraag is nu of de wonderbaarlijke vermenigvuldiging in het vlak ook mogelijk is. Dat bleek niet het geval. Als je een verzameling die een maat heeft in eindig veel deelverzamelingen verdeelt en als je die stukken, hoe lelijk ook, tot een andere verzameling in elkaar legt en die nieuwe verzameling heeft een maat dan zijn de maten van beide verzamelingen gelijk.

U voelt hem wellicht al aankomen: Tarski formuleerde een abstracte versie van `de kwadratuur van de cirkel’: kunnen we een cirkelschijf, zeg van oppervlakte 1, in eindig veel verzamelingen verdelen en die stukken weer in elkaar schuiven tot een vierkant van oppervlakte 1?

In 1990 beantwoordde Miklos Laczkovich deze vraag met “Ja”. De gebruikte stukken zijn vrij lelijk, maar ze hoeven alleen verschoven te worden, draaien hoeft niet. De kwadratuur van de cirkel is dus mogelijk, zij het met instrumenten die veel geavanceerder zijn dan een passer en een liniaal.

Iets over het woord `lelijk’. De ontdekkingen door Banach en Tarski en anderen van verzamelingen waaraan geen maat toe te kennen is leidden tot een vakgebied dat Beschrijvende Verzamelingenleer is gaan heten. Hierin worden verzamelingen geklassificeerd naar hun beschrijvingen; het `lelijk’ dat ik een paar keer gebruikt heb kan daar precies gemaakt worden: de verzamelingen van Banach en Tarski, en van Laczkowicz hebben, noodzakelijk, beschrijvingen die vele malen ingewikkelder zijn dan die van verzamelingen die je normaal tegenkomt als lijnen, krommen en andere herkenbare figuren.

En toch …

Aan het eind van 2016 kreeg dit verhaal nog een nieuw slot. Andrew Marks en Spencer Unger bewezen dat de kwadratuur van de cirkel met stukken gedaan kan worden die in de Beschrijvende Verzamelingenleer als zeer mooi zouden worden aangemerkt, de technische term is “van Borel-complexiteit ten hoogste vier”. Voor U naar de winkel holt om deze `heel mooie’ legpuzzel aan te schaffen: hoewel de stukken in het grote geheel van de deelverzamelingen van het vlak redelijk eenvoudig zijn, zijn ze nou ook weer niet zo makkelijk met de hand te maken en vast te pakken.
Daar komt nog bij dat er wel een heel grote doos nodig is om alle stukken in te bewaren: bij een lezing over dit resultaat werd Andrew Marks naar het aantal benodigde stukken gevraagd; zijn antwoord: in de orde van grootte van 10220. Dat is dus een Googol in het kwadraat, maal nog een keer 1020.

Verder lezen

Veel van wat hierboven is beschreven is uitgebreid na te lezen in The Banach-Tarski Paradox (second edition) van Grzegorz Tomkowicz en Stan Wagon uit 2016. Het resultaat van Marks en Unger is daar nog niet te vinden; `Borel circle-squaring’ is nog één van de grote open problemen in het boek. Wie zin heeft kan het artikel te pakken krijgen via arxiv.org.

Kwadratuur van de cirkel, I

`De kwadratuur van de cirkel’ is voor velen een metafoor voor onmogelijkheid en/of futiliteit; in het Engels is `circle-squarer’ een gangbare term voor iemand die iets onmogelijks voor elkaar probeert te krijgen.
Toch is het recentelijk gelukt: gegeven een cirkelschijf een vierkant maken met dezelfde oppervlakte, en wel door die schijf in een eindig aantal stukken te knippen, die op te schuiven en weer aan elkaar te leggen tot dat vierkant.
In de komende blogposts zal ik het verhaal van het probleem en de oplossing vertellen.

Lang geleden zag ik een cartoon waarop een passer te zien was die ‘s avonds op straat tegen een muur (of lantaarnpaal) geleund stond te dromen. In het droomballonnetje was een vierkant te zien. Ik heb die cartoon uitgeknipt en lang bewaard maar hij moet bij een verhuizing verloren zijn gegaan want ik kan hem niet meer vinden.

Nu kan je die cartoon op diverse niveaus waarderen maar voor mij was het een mooie illustratie bij een beroemd onmogelijkheidsbewijs uit de wiskunde: het is niet mogelijk met behulp van passer en liniaal bij een cirkelschijf met straal 1 een vierkant te maken met precies dezelfde oppervlakte als die schijf.

Euclides en Archimedes

Waarom `passer en liniaal’? Dat komt voort uit De Elementen van Euclides. Daarin wordt de Meetkunde opgebouwd vanuit een beperkt aantal uitgangspunten, waaronder de beroemde vijf postulaten. In de bewijzen worden alleen stappen gezet die in die postulaten beschreven zijn:

  1. Gegeven twee punten trek de lijn door die twee punten.
  2. Gegeven twee punten trek een cirkel door één van de punten en
    met het andere punt als middelpunt.

Euclides formuleerde de eerste stap in twee postulaten: je kunt de twee punten verbinden met een lijnstuk en dat lijnstuk kun je willekeurig verlengen; in redeneringen is het wat makkelijker in één keer die (oneindig lange) lijn getekend te denken. Deze twee stappen kunnen uitgevoerd worden met een liniaal en een passer, vandaar `passer en liniaal’. Overigens heeft die liniaal geen schaalverdeling en daarom spreken sommige boeken, om verwarring te voorkomen, liever van `passer en latje’.

De boeken van De Elementen staan dus vol met constructies die niet meer gebruiken dan de bovengenoemde twee stappen. Onder meer ook constructies van

  1. een paralellogram met dezelfde oppervlakte als een gegeven driehoek
  2. een rechthoek met dezelfde oppervlakte als een gegeven rechtlijnige figuur
  3. een vierkant met dezelfde oppervlakte als een gegeven parallellogram

Het patroon lijkt me duidelijk: bij zoveel mogelijk figuren een vierkant maken met dezelfde oppervlakte. Dat is waar het woord `kwadratuur’ (wat ouder: `quadratuur’) vandaan komt: de oppervlakte van een figuur wordt bepaald geacht als er een vierkant met dezelfde oppervlakte is geconstrueerd.
Wat in De Elementen niet wordt gedaan is de oppervlakte van een cirkelschijf bepalen.

Iemand die wel iets over die oppervlakte kon zeggen was Archimedes. Die bewees dat de oppervlakte van een cirkelschijf met straal r gelijk is aan die van een driehoek met hoogte gelijk aan r en basis gelijk aan de omtrek van de cirkel.
Aangezien de omtrek van de cirkel gelijk is aan 2πr is de oppervlakte van de schijf dus gelijk aan ½×2πr×r en dat is gelijk aan het welbekende πr2. Archimedes had deze notaties nog niet tot zijn beschikking; hij moest het bij de bovengegeven formulering houden. Hij liet ook zien dat, in moderne termen, π tussen de twee rationale getallen 3+10/71 en 3+10/70 ligt.
De bewijzen zijn on-line te vinden via de wikipedia-pagina “Measurement of a Circle”.

Onmogelijkheid

In de negentiende eeuw werd duidelijk waarom die kwadratuur van de cirkel niet in De Elementen gegeven was. Het is namelijk niet mogelijk om dat met alleen passer en latje te doen.

De sleutel tot deze oplossing ligt in het invoeren van coördinaten in het
platte vlak en het kijken wat men algebraïsch kan zeggen over de coördinaten van de punten die construeerbaar zijn vanuit de punten (0,0) en (1,0).
Het blijkt dat we met passer en latje kunnen optellen, aftrekken, vermenigvuldigen, delen en vierkantswortels trekken. En dat is alles.
Op deze manier zijn veel getallen, zoals √2, √(√2), √(2+√(3+√5)), … te construcren, maar lang niet alle getallen. In het bijzonder zijn de getallen π en √π niet met passer en latje te construeren; dat werd door Lindemann in 1882 aangetoond: er is geen enkele manier om uitgaande van het getal 1 en met gebruik van optellen, aftrekken, vermenigvuldigen, delen en vierkantswortels het getal π te maken (en √π dus ook niet).

Volgende keer: als niet met passer en latje kan het op een andere manier wel? Het antwoord is ja, maar de constructie kost heel wat moeite.

© 2011 TU Delft