Posted in August 2019
Dikke en dunne verzamelingen
Gisteren hebben we gekeken naar de wiskunde achter het vermoeden van Duffin en Schaeffer. Wat daar niet goed uit de verf kwam waren de noties van `dikke’ en `dunne’ verzamelingen. Daar doen we vandaag wat aan.
Zoals gisteren en in de krant beschreven gaat het vermoeden van Duffin en Schaeffer over benaderingen van irrationale getallen met behulp van breuken. De situatie is als volgt: neem een rij (xn)n van positieve reële getallen en noem een irrationaal getal α goed benaderbaar, volgens de gegeven rij, als er oneindig veel natuurlijke getallen n bestaan met voor elk van die n een breuk t/n met noemer n bestaat zó dat |α-t/n|<xn.
De vraag is dan natuurlijk of er irrationale getallen zijn die goed te benaderen zijn. Gisteren hebben we gezien dat als x_n=n-2 alle irrationale getallen goed te benaderen zijn. Met een beroep op de gisteren ook genoemde Categoriestelling van Baire kunnen we laten zien dat er altijd heel veel goed benaderbare irrationale getallen zijn. Net als gisteren bekijken we voor elke n de intervallen (0,xn), (1/n-xn,1/n+xn) … (1-1/n-xn,1-1/n+xn), (1-xn,1). Hun vereniging noemen we An.
Neem een (klein) interval (a,b) binnen (0,1); dan geldt voor elke n met 1/n<b-a dat An en (a,b) een niet-lege doorsnede hebben (bedenk maar eens waarom dat zo is). Dit betekent dat indien we voor elke n de verzamelingen An, An+1, An+2, … verenigen tot de verzameling On we een verzameling krijgen die met elk intervalletje getallen gemeen heeft. De stelling van Baire garandeert nu dat er heel veel getallen bestaan die tot alle On behoren, en dus tot oneindig veel van de An (denk daar ook maar eens goed over na). Al die getallen zijn dus goed benaderbaar, volgens de gegeven rij.
In topologische zin is het complement van die verzameling goed benaderbare getallen nogal dunnetjes, in het Engels: meagre; de verzameling goed benaderbare getallen is dus, topologisch gesproken, bijna het hele interval (0,1) een dikke verzameling dus.
Het vermoeden van Duffin en Schaeffer ging over een andere notie van dik en dun. Laten we de verzameling goed benaderbare getallen, bij de rij (xn)n, even noteren met G(x). De nu bewezen stelling kijkt naar de (totale) lengte van de intervalletjes die we hierboven gebruikt hebben. Voor elke n is de totale lengte van An gelijk aan 2×n×xn. Als de xn-en te klein zijn zal de verzameling G(x) volgens deze notie als dun aangemerkt worden in die zin dat de kans dat een irrationaal getal goed benaderbaar is gelijk is aan 0.
De stelling van Dimitris Koukoulopoulos en James Maynard spreekt uit dat voor elke rij (xn)n de verzameling G(x) hetzij kans gelijk aan 1 heeft om geraakt te worden, hetzij kans 0; een tussenweg is er niet. Daarnaast geeft de stelling precies aan voor welke rijen kans 1 geldt en voor welke rijen kans 0.
We hebben hier dus twee soorten `dik en dun’ gezien: topologisch en kanstheoretisch. Beide noties worden in de Analyse toegepast om te laten zien dat bepaalde objecten bestaan: als je laat zien dat de verzameling van die dingen `dik’ is is die zeker niet leeg.
Voor topologen is de verzameling goed benaderbare getallen altijd `dik’; voor kansrekenaars is hij soms `dik’ en soms `dun’. Dit klinkt paradoxaal, maar is het niet: het is `gewoon’ een gevolg van de definities. En het illusteert wel treffend de titel van de column die gisteren is aangehaald: ‘De kans is nul’ is niet hetzelfde als ‘dat gaat niet gebeuren’.
Het vermoeden van Duffin en Schaeffer
Recentelijk is het Duffin-Schaeffer-vermoeden bewezen. U kunt de preprint hier lezen. In de krant is er ook aandacht aan besteed. Ik wil hier iets meer over de wiskunde achter dit vermoeden vertellen.
Het vermoeden, nu dus een stelling, zegt iets over het benaderen van irrationale getallen met behulp van rationale getallen. De vraag is in het algemeen hoe efficiëent dergelijke benaderingen kunnen zijn.
Nu zullen de meningen over wat efficiënt is uiteen lopen maar de benaderingen die we in de praktijk gebruiken, namelijk afgekapte decimale ontwikkelingen, zijn het niet echt. Als die afgekapte ontwikkelingen als breuk schrijft is die breuk vrijwel nooit te vereenvoudigen: de benadering 3.14159265358979323846264338327 van π levert een onvereenvoudigbare breuk met een grote teller en een grote noemer.
Een goede benadering is er een waar de nauwkeurigheid groot is, vergeleken met de grootte van teller en noemer. Zo kun je 22/7 een goede benadering van π noemen omdat het verschil 22/7-π kleiner is dan 1/49. Het criterium dat we hier hanteren is: p/q is een goede benadering van α als |α-p/q| kleiner is dan 1/q2. Overigens is 19/6 ook een goede benadering: 19/6-π is kleiner dan 1/36.
Een beetje spelen met een rekenmachientje laat zien dat er geen goede benaderingen van π zijn met noemers 8 of 9.
Het vermoeden van Duffin en Schaeffer, nu dus de stelling van Dimitris Koukoulopoulos en James Maynard, gaat overigens niet over individuele irrationale getallen als π of √2. Het bekijkt de zaak van de andere kant en doet uitspraken over hoeveel irrationale getallen veel goede benaderingen hebben.
Je kunt bijvoorbeeld een vaste noemer n nemen en kijken welke getallen een goede benadering met noemer n hebben. Hierbij beperken we ons tot het interval (0,1); getallen in andere intervallen krijgen we door over een geheel getal op te schuiven.
Nu is meteen duidelijk welke getallen een goede benadering met noemer n hebben: die liggen in de intervalletjes van de vorm (k/n-1/n2,k/n+1/n2), met k=1,…,n-1, en in (0,1/n2) en (1-1/n2,1).
De totale lengte van die intervallen is gelijk aan 2/n (reken maar na).
Hiermee kun je voorspellingen doen: omdat 2/10+2/11+2/12+2/13+2/14+2/15 kleiner is dan 1 zijn er getallen zonder goede benadering met noemers 10 tot en met 15.
Noem de vereniging van de intervalletjes hierboven even An. Met behulp van de Categoriestelling van Baire kun je bewijzen dat er een relatief `dikke’ deelverzameling van het interval (0,1) is waarvan elk element tot oneindig veel van de An behoort en dus oneindig veel goede benaderingen heeft.
Dit nu is de aard van de stelling van Dimitris Koukoulopoulos en James Maynard: deze geeft, bij bepaalde definities van `goede benadering’, voorwaarden onder welke de verzameling getallen met oneindig veel goede benaderingen heel `dik’ is of juist heel `dun’, waarbij `dik’ en `dun’ ondubbelzinnige definities hebben. Daarnaast geeft de stelling ook een dichotomie: `dik’ en `dun’ zijn de enige mogelijkheden. Het is nooit zo dat ongeveer de helft van de getallen oneindig veel goede benaderingen hebben; de kans is altijd gelijk aan nul (wat niet betekent dat er geen getallen zonder oneindig veel goede benaderingen zijn) of gelijk aan één.
In het krantenartikel wordt nog het volgende voorbeeld van `mooie’ benaderingen gegeven: als hierboven moet |α-p/q| kleiner zijn dan 1/q2, maar q moet zelf ook een kwadraat zijn. In dat geval is de kans op oneindig veel mooie benaderingen gelijk aan nul, maar de bovengenoemde stelling van Baire garandeert toch dat er heel veel irrationale getallen met oneindig veel goede benaderingen zijn.
Ten slotte: voor de definitie van `goed’ waar dit stuk mee begon geldt dat <emelk irrationaal getal oneindig veel goede benaderingen heeft. Dat bewijs je niet met de methoden die hier beschreven zijn, daar moet je wat dieper de getaltheorie in duiken. Zie hiervoor de Wikipediapagina’s over Benaderingsstelling van Dirichlet en over Kettingbreuken.
Recent Comments