Kwadratuur van de cirkel, II

Vorige keer hebben we bekeken wat `Kwadratuur van de Cirkel’ inhoudt in het kader van Euclidische Meetkunde. We hebben ook gezien dat kwadratuur van de cirkel niet mogelijk is met een passer en een latje. Deze keer gaan we bekijken of er andere manieren zijn om die kwadratuur uit te voeren.

Banach en Tarski

In het begin van de twintigste eeuw rees de behoefte om aan steeds meer deelverzamelingen van de getallenlijn, het vlak, en de ruimte respectievelijk een `lengte’, `oppervlakte’ of `volume’ toe te kennen. Om enige afstand tot de concrete meetkunde te bewaren begon men het woord `maat’ te gebruiken en de eerste die een goede definitie van `maat’ formuleerde was Lebesgue, in 1908.
Later is dit door anderen in zijn volle algemeenheid uitgewerkt maar in de bovengenoemde drie gevallen gebruiken we de Lebesgue-maat nog vrijwel zo als Lebesgue hem gedefinieerd heeft.
Voor bekende meetkundige figuren geeft de Lebesgue-maat de reeds bekende waarde maar voor willekeurige verzamelingen gaat het niet altijd even goed.

Een extreem voorbeeld hiervan werd gegeven door de Polen Banach en Tarski. Voortbouwend op werk van Hausdorff lieten ze zien dat men een massieve bol met straal 1 in eindig veel (vijf is genoeg) deelverzamelingen kan verdelen, en dat men daarna die eindig veel stukken in elkaar kan schuiven tot twee massieve bollen van straal 1. Wie met het artikel van Banch en Tarski in de hand nu een wonderbaarlijke vermenigvuldiging van één sinaasappel tot twee sinaasappels wil uitvoeren komt bedrogen uit.
De bollen zijn ideale wiskundige bollen, geen fysieke sinaasappels. En, en daar was het Banach en Tarski om te doen, de stukken waarin ze de bol verdeelden zijn zo lelijk dat er op geen enkele manier een maat aan toe te kennen is. Immers als dat wel mogelijk was dan zou 1+1=1 bewezen zijn.

Terug naar het vlak

De vraag is nu of de wonderbaarlijke vermenigvuldiging in het vlak ook mogelijk is. Dat bleek niet het geval. Als je een verzameling die een maat heeft in eindig veel deelverzamelingen verdeelt en als je die stukken, hoe lelijk ook, tot een andere verzameling in elkaar legt en die nieuwe verzameling heeft een maat dan zijn de maten van beide verzamelingen gelijk.

U voelt hem wellicht al aankomen: Tarski formuleerde een abstracte versie van `de kwadratuur van de cirkel’: kunnen we een cirkelschijf, zeg van oppervlakte 1, in eindig veel verzamelingen verdelen en die stukken weer in elkaar schuiven tot een vierkant van oppervlakte 1?

In 1990 beantwoordde Miklos Laczkovich deze vraag met “Ja”. De gebruikte stukken zijn vrij lelijk, maar ze hoeven alleen verschoven te worden, draaien hoeft niet. De kwadratuur van de cirkel is dus mogelijk, zij het met instrumenten die veel geavanceerder zijn dan een passer en een liniaal.

Iets over het woord `lelijk’. De ontdekkingen door Banach en Tarski en anderen van verzamelingen waaraan geen maat toe te kennen is leidden tot een vakgebied dat Beschrijvende Verzamelingenleer is gaan heten. Hierin worden verzamelingen geklassificeerd naar hun beschrijvingen; het `lelijk’ dat ik een paar keer gebruikt heb kan daar precies gemaakt worden: de verzamelingen van Banach en Tarski, en van Laczkowicz hebben, noodzakelijk, beschrijvingen die vele malen ingewikkelder zijn dan die van verzamelingen die je normaal tegenkomt als lijnen, krommen en andere herkenbare figuren.

En toch …

Aan het eind van 2016 kreeg dit verhaal nog een nieuw slot. Andrew Marks en Spencer Unger bewezen dat de kwadratuur van de cirkel met stukken gedaan kan worden die in de Beschrijvende Verzamelingenleer als zeer mooi zouden worden aangemerkt, de technische term is “van Borel-complexiteit ten hoogste vier”. Voor U naar de winkel holt om deze `heel mooie’ legpuzzel aan te schaffen: hoewel de stukken in het grote geheel van de deelverzamelingen van het vlak redelijk eenvoudig zijn, zijn ze nou ook weer niet zo makkelijk met de hand te maken en vast te pakken.
Daar komt nog bij dat er wel een heel grote doos nodig is om alle stukken in te bewaren: bij een lezing over dit resultaat werd Andrew Marks naar het aantal benodigde stukken gevraagd; zijn antwoord: in de orde van grootte van 10220. Dat is dus een Googol in het kwadraat, maal nog een keer 1020.

Verder lezen

Veel van wat hierboven is beschreven is uitgebreid na te lezen in The Banach-Tarski Paradox (second edition) van Grzegorz Tomkowicz en Stan Wagon uit 2016. Het resultaat van Marks en Unger is daar nog niet te vinden; `Borel circle-squaring’ is nog één van de grote open problemen in het boek. Wie zin heeft kan het artikel te pakken krijgen via arxiv.org.

Be Sociable, Share!

2 comments

De constante is diameter versus diagonaal.
Diameter 1 delen door 4 =4/4
Diagonaal = 5/4.
Diagonaal² / 2 = oppervlakte vierkant.
Diagonaal / 4 = 1/10 omtrek cirkel met opp = vierkant. 1/10* 10 = omtrek cirkel / diameter = pi. 3.125 of 5/8

Leave a Reply

Your email address will not be published.

¬© 2011 TU Delft