KP Hart

KP's ramblings

Upgoer Five

Today I was reminded of the Upgoer Five Editor, which was inspired by this XKCD cartoon (an explanation of the workings of the Saturn V rocket in very simple words).

I knew I had tried it once and thanks to twitter I could find my `explanation’ of bijections and a `definition’ of infinity again. This is just a short post so that I have an obvious place to look for the link to that short piece, when I need it.

Also, it will be fun to do this in Norwegian.

Dikke en dunne verzamelingen

Gisteren hebben we gekeken naar de wiskunde achter het vermoeden van Duffin en Schaeffer. Wat daar niet goed uit de verf kwam waren de noties van `dikke’ en `dunne’ verzamelingen. Daar doen we vandaag wat aan.

Zoals gisteren en in de krant beschreven gaat het vermoeden van Duffin en Schaeffer over benaderingen van irrationale getallen met behulp van breuken. De situatie is als volgt: neem een rij (xn)n van positieve reële getallen en noem een irrationaal getal α goed benaderbaar, volgens de gegeven rij, als er oneindig veel natuurlijke getallen n bestaan met voor elk van die n een breuk t/n met noemer n bestaat zó dat |α-t/n|<xn.

De vraag is dan natuurlijk of er irrationale getallen zijn die goed te benaderen zijn. Gisteren hebben we gezien dat als x_n=n-2 alle irrationale getallen goed te benaderen zijn. Met een beroep op de gisteren ook genoemde Categoriestelling van Baire kunnen we laten zien dat er altijd heel veel goed benaderbare irrationale getallen zijn. Net als gisteren bekijken we voor elke n de intervallen (0,xn), (1/n-xn,1/n+xn) … (1-1/n-xn,1-1/n+xn), (1-xn,1). Hun vereniging noemen we An.

Neem een (klein) interval (a,b) binnen (0,1); dan geldt voor elke n met 1/n<b-a dat An en (a,b) een niet-lege doorsnede hebben (bedenk maar eens waarom dat zo is). Dit betekent dat indien we voor elke n de verzamelingen An, An+1, An+2, … verenigen tot de verzameling On we een verzameling krijgen die met elk intervalletje getallen gemeen heeft. De stelling van Baire garandeert nu dat er heel veel getallen bestaan die tot alle On behoren, en dus tot oneindig veel van de An (denk daar ook maar eens goed over na). Al die getallen zijn dus goed benaderbaar, volgens de gegeven rij.
In topologische zin is het complement van die verzameling goed benaderbare getallen nogal dunnetjes, in het Engels: meagre; de verzameling goed benaderbare getallen is dus, topologisch gesproken, bijna het hele interval (0,1) een dikke verzameling dus.

Het vermoeden van Duffin en Schaeffer ging over een andere notie van dik en dun. Laten we de verzameling goed benaderbare getallen, bij de rij (xn)n, even noteren met G(x). De nu bewezen stelling kijkt naar de (totale) lengte van de intervalletjes die we hierboven gebruikt hebben. Voor elke n is de totale lengte van An gelijk aan 2×n×xn. Als de xn-en te klein zijn zal de verzameling G(x) volgens deze notie als dun aangemerkt worden in die zin dat de kans dat een irrationaal getal goed benaderbaar is gelijk is aan 0.
De stelling van Dimitris Koukoulopoulos en James Maynard spreekt uit dat voor elke rij (xn)n de verzameling G(x) hetzij kans gelijk aan 1 heeft om geraakt te worden, hetzij kans 0; een tussenweg is er niet. Daarnaast geeft de stelling precies aan voor welke rijen kans 1 geldt en voor welke rijen kans 0.

We hebben hier dus twee soorten `dik en dun’ gezien: topologisch en kanstheoretisch. Beide noties worden in de Analyse toegepast om te laten zien dat bepaalde objecten bestaan: als je laat zien dat de verzameling van die dingen `dik’ is is die zeker niet leeg.
Voor topologen is de verzameling goed benaderbare getallen altijd `dik’; voor kansrekenaars is hij soms `dik’ en soms `dun’. Dit klinkt paradoxaal, maar is het niet: het is `gewoon’ een gevolg van de definities. En het illusteert wel treffend de titel van de column die gisteren is aangehaald: ‘De kans is nul’ is niet hetzelfde als ‘dat gaat niet gebeuren’.

Het vermoeden van Duffin en Schaeffer

Recentelijk is het Duffin-Schaeffer-vermoeden bewezen. U kunt de preprint hier lezen. In de krant is er ook aandacht aan besteed. Ik wil hier iets meer over de wiskunde achter dit vermoeden vertellen.

Het vermoeden, nu dus een stelling, zegt iets over het benaderen van irrationale getallen met behulp van rationale getallen. De vraag is in het algemeen hoe efficiëent dergelijke benaderingen kunnen zijn.
Nu zullen de meningen over wat efficiënt is uiteen lopen maar de benaderingen die we in de praktijk gebruiken, namelijk afgekapte decimale ontwikkelingen, zijn het niet echt. Als die afgekapte ontwikkelingen als breuk schrijft is die breuk vrijwel nooit te vereenvoudigen: de benadering 3.14159265358979323846264338327 van π levert een onvereenvoudigbare breuk met een grote teller en een grote noemer.
Een goede benadering is er een waar de nauwkeurigheid groot is, vergeleken met de grootte van teller en noemer. Zo kun je 22/7 een goede benadering van π noemen omdat het verschil 22/7-π kleiner is dan 1/49. Het criterium dat we hier hanteren is: p/q is een goede benadering van α als |α-p/q| kleiner is dan 1/q2. Overigens is 19/6 ook een goede benadering: 19/6-π is kleiner dan 1/36.
Een beetje spelen met een rekenmachientje laat zien dat er geen goede benaderingen van π zijn met noemers 8 of 9.

Het vermoeden van Duffin en Schaeffer, nu dus de stelling van Dimitris Koukoulopoulos en James Maynard, gaat overigens niet over individuele irrationale getallen als π of √2. Het bekijkt de zaak van de andere kant en doet uitspraken over hoeveel irrationale getallen veel goede benaderingen hebben.
Je kunt bijvoorbeeld een vaste noemer n nemen en kijken welke getallen een goede benadering met noemer n hebben. Hierbij beperken we ons tot het interval (0,1); getallen in andere intervallen krijgen we door over een geheel getal op te schuiven.
Nu is meteen duidelijk welke getallen een goede benadering met noemer n hebben: die liggen in de intervalletjes van de vorm (k/n-1/n2,k/n+1/n2), met k=1,…,n-1, en in (0,1/n2) en (1-1/n2,1).
De totale lengte van die intervallen is gelijk aan 2/n (reken maar na).
Hiermee kun je voorspellingen doen: omdat 2/10+2/11+2/12+2/13+2/14+2/15 kleiner is dan  1 zijn er getallen zonder goede benadering met noemers 10 tot en met 15.
Noem de vereniging van de intervalletjes hierboven even An. Met behulp van de Categoriestelling van Baire kun je bewijzen dat er een relatief `dikke’ deelverzameling van het interval (0,1) is waarvan elk element tot oneindig veel van de An behoort en dus oneindig veel goede benaderingen heeft.

Dit nu is de aard van de stelling van Dimitris Koukoulopoulos en James Maynard: deze geeft, bij bepaalde definities van `goede benadering’, voorwaarden onder welke de verzameling getallen met oneindig veel goede benaderingen heel `dik’ is of juist heel `dun’, waarbij `dik’ en `dun’ ondubbelzinnige definities hebben. Daarnaast geeft de stelling ook een dichotomie: `dik’ en `dun’ zijn de enige mogelijkheden. Het is nooit zo dat ongeveer de helft van de getallen oneindig veel goede benaderingen hebben; de kans is altijd gelijk aan nul (wat niet betekent dat er geen getallen zonder oneindig veel goede benaderingen zijn) of gelijk aan één.

In het krantenartikel wordt nog het volgende voorbeeld van `mooie’ benaderingen gegeven: als hierboven moet |α-p/q| kleiner zijn dan 1/q2, maar q moet zelf ook een kwadraat zijn. In dat geval is de kans op oneindig veel mooie benaderingen gelijk aan nul, maar de bovengenoemde stelling van Baire garandeert toch dat er heel veel irrationale getallen met oneindig veel goede benaderingen zijn.

Ten slotte: voor de definitie van `goed’ waar dit stuk mee begon geldt dat <emelk irrationaal getal oneindig veel goede benaderingen heeft. Dat bewijs je niet met de methoden die hier beschreven zijn, daar moet je wat dieper de getaltheorie in duiken. Zie hiervoor de Wikipediapagina’s over Benaderingsstelling van Dirichlet en over Kettingbreuken.

What is cardinality?

This is the second in a short series of blog posts intended to explain the terms in red in the following sentence, that succinctly describes the Continuum Hypothesis.
There is no set whose cardinality is strictly between that of the integers and the real numbers.
These are, in the words of John Lloyd, the bits that he does not understand.

In the first post and its addendum we dealt with the difficulty that any definition of the notion `set’ must, to some extent, be circuitous: one cannot avoid the use of a synonym, such as `collection’, `aggregate’, …

The next term in red in the sentence above is `cardinality’. Here the difficulty is worse.
To see why this is we turn to Georg Cantor again in his Beiträge zur Begründung der transfiniten Mengenlehre he gave the following definition.

,Mächtigkeit` oder ,Cardinalzahl` von M nennen wir den Allgemeinbegriff, welcher mit Hülfe unseres activen Denkvermögens dadurch aus der Menge M hervorgeht, dass von der Beschaffenheit ihrer verschiedenen Elemente m und von der Ordnung ihres Gegebenseins abstrahirt wird.
Das Resultat dieses zweifachen Abstractionsacts, die Kardinalzahl oder Mächtigkeit von M, bezeichnen wir mit |M|.

In the translation by Philip E. B. Jourdain this becomes

We will call by the name “power” or “cardinal number” of M the general concept which, by means of our active faculty of thought, arises from the aggregate M when we make abstraction of the nature of its various elements m and of the order in which they are given.
We denote the result of this double act of abstraction, the cardinal number or power of M by |M|.

As beautiful as this may sound it is actually meaningless. The phrases “active faculty of thought” and “abstraction of the nature” have no mathematical meaning. When one reads the next few pages of Cantor’s paper it becomes quite clear that this is an attempt to define `the number of elements’ of the set. Those next pages establish that two sets have the same power if and only if “it is possible to put them, by some law, in such a relation to one another that to every element of each one of them corresponds one and only one elemen of the other” (translation by Jourdain).

By way of example the sets of provinces of the Netherlands and of months of the year have the same power; the following relation between provinces and months establishes this:
(January,Groningen),
(February,Drente),
(March,Friesland),
(April,Overijssel),
(May,Flevoland),
(June,Gelderland),
(July,Utrecht),
(August,Noord-Holland),
(September,Zuid-Holland),
(October,Zeeland),
(November,Noord-Brabant),
(December,Limburg).
Every month corresponds to one and only one province and every province corresponds to one and only one month.

Before we continue: `cardinality’ is just another term for `power’.

The definition of power, or cardinality, or cardinal number is more incomplete than that of `set’. At least in the latter definition we had a synonym to fall back on; the definition of cardinality does not even have that contingency. However, and this is very important for what follows, even though `cardinality’ does not have a good definition the notion that two sets have the same cardinality does have a mathematically sound and workable definition: nowadays Cantor’s characterization of when two sets have the same power is taken as its definition.

As an aside: a similar thing can be said of the notion of length. If we ever come face to face it will be clear immediately whether the length of John Lloyd is larger or smaller than mine (or equal even) but unless we happen to have a tape measure handy we will not know our lengths, expressed in the local units.

Small children know how to compare the cardinalities of sets: a practical instance is given by chocolate sprinkles, a favourite Dutch breakfast item. If one takes two spoonfuls of these items it is quite easy to check whether these contain the same number of sprinkles. Here are two heaps of them:

I personally did the following: take one from each heap and eat them, and again, and again, and again, … after a while the … was empty and the other one was not. This means that the heaps did not contain the same number of sprinkles and I we can even say that the cardinality of the other heap of sprinkles was larger than that of the … one. This process was quite easy I could walk away and resume again later; I did not worry about losing my count because I did not count.

Thus we find ourselves in the strange situation that we have an undefined notion `cardinality of a set’, yet when we are given two sets we have a way of potentially deciding whether they have the same cardinality. We can even say when the cardinalities of two sets are comparable: if M has the same cardinality as some subset of N we can express this by saying that the cardinality of M is less than or equal to that of N, we can even write |M|≤|N| in that case. In the next installment we shall see that the next bit, strictly between, actually does have an unambiguous definition.

What is a set? (revisited)

This is an addendum to the first in a short series of blog posts intended to explain the terms in red in the following sentence, that succinctly describes the Continuum Hypothesis.
There is no set whose cardinality is strictly between that of the integers and the real numbers.
These are, in the words of John Lloyd, the bits that he does not understand.

The gist of the post referred to above was that, very strictly speaking, sets have no proper mathematical definition. The definitions that were quoted from the works of Bolzano and Cantor were, to a large extent, by synonym: “a set is a collection …”. The ellipsis would contain some conditions what the collection should satisfy to be deemed a set. But the definition would be incomplete because `collection’ remained undefined. Many definitions in mathematics suffer from a similar `defect’: at some point there is a primitive notion that is not further defined. In most every branch of mathematics that primitive notion turns out to be `set’ in some form or another.

That looks bad: Mathematics seems to be based on a badly defined notion. However not all is lost. Most of the time we know exactly what we are talking about. It is true that `collection’ is undefined but, as mentioned in the original post, we recognize one when we see one and in Mathematics we are very particular about how we work with them.

By way of example consider the books currently in our house. They form a well-defined collection: it is very clear which books are in that collection and which books are not. That collection forms what Bolzano and Cantor consider to be a set. It has an unambiguous definition. Just like the set of books in our house that have exactly 250 pages: everyone that we to gather `the books with exactly 250 pages’ will come back with the same collection. And the unambiguity separates the sets from the arbitrary collections. If I were to ask John Lloyd to gather the interesting books in our house he would most likely come out with a different collection than I would. The phrase `the interesting books in our house’ does not define a set.

What determines a set in mathematics is the unambigiuty of its definition: no matter who we set the task of determining what is in it, the answer should always be the same. That does not mean that that task is easy or doable in a (very) short time. The prime numbers form a set, a subset of the set of natural numbers, and for every individual natural number it is straightforward to determine whether it is prime or not, but separating them from the other natural numbers by hand is not an option.

Because of this and other examplese have developed the curly-braces notation for sets.
P = {n : n is a prime number}
is a properly defined set and for every natural number n we can decide whether n∈P (`n is in P’) or not.

And that is how mathematicians consider sets: as collections where membership can be checked unambiguously. Thus the advisoy committee of Episode 2, series 10 of the Museum of Curiosity forms a set, the funny members of that committee most likely do not. There is, alas, no unambiguous definition of `funny’.

Eindexamen wiskunde A, vwo, 2019-05-20

Het eindexamen wiskunde A (vwo) was afgelopen maandag. De opgaven staan hier; ik heb de sommen gemaakt en hier zijn mijn uitwerkingen en opmerkingen.

Het examen leek mij niet echt moeilijk maar ik vond het verband tussen de lange inleidingen en de uiteindelijke sommen vaak wel ver te zoeken.

Eindexamen wiskunde B, vwo, 2019-05-20

Het eindexamen wiskunde B (vwo) was gisteren. De opgaven staan hier; ik heb de sommen gemaakt en hier zijn mijn uitwerkingen en opmerkingen.

Het examen leek mij goed te doen, veel vragen kwamen neer op niet al te moeilijke algebra of gonio. Hier en daar moest wat verder doorgedacht worden. Bij een paar opgaven was de gegeven beschrijving wel erg uitgebreid, vergeleken met het werk dat uiteindelijk gedaan moest worden.

Ik raad iedereen overigens af zo’n examen te maken terwijl je ook een film probeert te bekijken; ik vond vanochtend wel wat ongerechtigheden op mijn blaadjes van gisteravond.

What is a set?

This is the first in a short series of blog posts intended to explain the terms in red in the following sentence, that succinctly describes the Continuum Hypothesis.
There is no set whose cardinality is strictly between that of the integers and the real numbers.
These are, in the words of John Lloyd, the bits that he does not understand.

Sets pervade mathematics. Basically every definition of a mathematical structure contains the phrase “… a set such that …”. The language and tools of Set Theory generally make it possible to formulate results efficiently.

It may therefore come as a bit of a surprise that the question “What is a set?” does not have a straightforward answer. That sounds strange because we generally recognise a set when we see one: thimbles, forks, railway-shares …,(but not care, hope and soap) you name it, someone will have a set (collection) of it.

However, in Mathematics we like precise definitions, so that at every moment it is clear what we are talking about. A word of warning is needed here, nicely illustrated by this quote from Goethe.

1005. Die Mathematiker sind eine Art Franzosen; redet man mit ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
Johann Wolfgang von Goethe, Maximen und Reflexionen, Nachlass, Über Natur und Naturwissenschaft

I do not have the illusion to know what Goethe actually meant to say with this and further study of his work may reveal that, but for me this quote is very apt all by itself. Many definitions of mathematical notions do not conform to the expectations of non-mathematicians. Things that are nigh on synonymous in the dictionary may have rather different meanings in mathematics.

To define what a set is we turn to two pioneers of the study of the infinite, Bernard Bolzano and Georg Cantor.

In his Paradoxieen des Unendlichen Bolzano wrote this on page 4, after a short introduction wherein he exlained the need for a definition of Menge.

Einen Inbegriff, den wir einem solchen Begriffe unterstellen, bei dem die Anordnung seiner Teile gleichgültig ist (an dem sich also nichts f&uumlr uns Wesentliches ändert, wenn sich bloß diese ändert), nenne ich eine Menge;

In the translation of this work by Donald A. Steele and the above definition is rendered as follows.

An aggregate whose basic conception renders the arrangement of its members a matter of indifference, and whose permutation therefore produces no essential change from the current point of view, I shall call a set (Menge),

The very first words written by Georg Cantor in his Beiträge zur Begründung der transfiniten Mengenlehre are

Unter einer ,Menge` verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unserer Anschauung oder unseres Denkens (welche die ,Elemente` von M genannt werden) zu einem Ganzen.
In Zeichen drücken wir dies so aus:
M={m}

In the translation by Philip E. B. Jourdain we find:

By an “aggregate” (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the “elements” of M.
In signs we express this thus:
M={m}

I think it is no coincidence that the notion `Menge’ was defined during investigations of the notion of `infinite’. At that moment the relations between the individuals that make up the whole are of secondary importance. And at some point one chooses one out of many synonyms &mdsah; collection, multitude, Mannigfaltigkeit, aggregate, set, verzameling, &hellip — and that becomes that name of the basic object of investigation.

If you read the definitions closely then you will see that they, strictly speaking, define nothing: both use a synonym, Inbegriff or Zusammenfassung, as a definition. However, Bolzano explicitly adds a condition (and Cantor does so implicitly, as witnessed by the rest of his paper) that was also mentioned above: the relations, if any, between the elements of the sets are not important. A few paragraphs before the definition Bolzano used the example of a broken tumbler; we tend to view that as different from that same tumbler before it was broken because the relations between the constituents have changed, as a set — of atoms, molecules — it has not changed.

It is this condition that tell us what the goal of Bolzano and Cantor undoubtedly was: delineate as sharply as possible about which objects they make their pronouncements. Bolzano’s definition was the summary of a long run-up where he discussed what properties a Menge should have. Cantor jumped right in because he had been considering sets for two decades already.

On a naïve level these definitions are quite workable because all that happens is that certain entities now have the label `set’ applied to them. Something like {1,2,3,4,5} is recognised by everyone as a “the set of natural numbers from 1 through 5”. And also sets with a description like {n ∈ N : n ≤ 10100} is fine, provided we have learned some of the language of mathematics. Here ∈ means `is element of’, ≤ means `less than or equal’ and N represents the set of natural numbers.

Mathematics differs from `daily life’ in one seemingly innocuous point: mathematicians give set status to a few things that some people do not recognise as sets. The empty set and sets with (exactly) one element are perfectly acceptable mathematically. But, if I were to tell you that I have a set of stamps and show you an album without any in it you would not consider me a stamp collector, nor if a were to show you just one stamp (right before I stick it on an envelope).

Mathematically speaking these are legitimate sets and they are also quite necessary because it would become quite cumbersome to exclude them as results of operations on sets. Think of equations. Very often we speak of solution sets and that would suddenly be illegal is the equation had no or just one solution? Really?

But still, this all assumes that we recognize a set when we see one: a collection of things thrown together between curly braces for a certain purpose. It’s the thirteen cards in your hand at bridge before you inspect and order them; it’s the points on a line where it is immaterial which point lies to the left or right of another point. All this does not tell us what a set is. For that we should define first what a collection is …

So, where does that leave us? The tools and language of Set Theory pervade mathematics and are quite powerful, yet we do not have a fully satisfactory definition of what a set actually is. For day-to-day mathematics that is no big problem because, as I said above, we recognise many familiar entities as `sets’ and treat them as such.

But what about those of us who want to know what a set really is? Who do not want to `recognise a set when they see it’? Well, we can satisfy them by setting up Set Theory purely logically and thus define what our objects are. The resulting `sets’ are not quite like those we learned to recognise but every one of our familiar sets has a faithful logical copy. This means that we can, with a bit of care, keep on using sets in the naïve way we have always done.

We may come back to that logical approach in a later post.

De eindexamens wiskunde A en B van de havo.

De eindexamens waren al een week geleden maar de blogsite van de TU had deze week inlogproblemen dus ben ik hier een beetje laat.
Ik heb de examens gemaakt en de uitwerkingen staan hier: wiskunde A en wiskunde B.

De examens kwamen op mij niet moeilijk over; op facebook leidden mijn opmerkingen over wiskunde A tot veel discussie, met hier en daar een kanttekening dat wat ik `niet moeilijk’ vond voor veel leerlingen onoverkomelijk bleek.
Wat ik van wiskunde B vond bleek minder controversieel.

Maandag komen de eindexamens van het vwo.

De koningin en de profeet

Via facebook kwam ik bij dit artikel uit The Poke: de Koningin van Engeland zou afstammen van de profeet Mohammed. Het refereert aan een stuk uit de Daily Mail van vorig jaar. Maar goed, is dit bijzonder?

Een nuttig gegeven in het artikel is dat we van de koningin 43 generaties terug moeten om bij de profeet te komen. Daar kunnen we mee rekenen.
Op deze pagina wordt met veel slagen om de arm geschat hoeveel mensen er ooit op aarde geleefd hebben. Dat zouden er zo’n 108 miljard zijn. Op die pagina staat een tabel met bevolkingsaaantallen voor diverse jaartallen. Daaruit kunnen we schatten dat er in de tijd van Mohammed niet veel meer dan 400.000.000 mensen op de hele aarde leefden.
Aan de andere kant: als we vanuit om het even welk persoon 43 generaties terug in de tijd gaan en consequent bij elke voorouder de naam van de vader en moeder op zouden schrijven, dan bevat elke nieuwe generatie twee keer zoveel namen als de voorgaande: twee ouders, vier grootouders, acht overgrootouders, enzovoort. De 43ste generatie bevat dan 243=8.796.093.022.208 namen.

Wat dan overduidelijk is dat er heel wat personen meer dan één keer in die 43ste generatie genoemd zullen worden: gemiddeld ruim 20.000 maal. Als je zo naar die getallen kijkt wordt het hoogst onwaarschijnlijk dat Mohammed niet een voorouder van de koningin is.
Er zijn natuurlijk geografische omstandigheden die personen uit bepaalde gebieden wat onwaarschijnlijker als voorouder maken, maar er is altijd veel verkeer tussen Europa en de Arabische wereld geweest. Ik hou het er op dat het helemaal niet bijzonder is dat er een lijntje loopt van Mohammed naar Elizabeth. Het zou wel knap zijn als ze echt zo’n lijntje zouden hebben gevonden.

© 2011 TU Delft