KP Hart
What is a set?
This is the first in a short series of blog posts intended to explain the terms in red in the following sentence, that succinctly describes the Continuum Hypothesis.
There is no set whose cardinality is strictly between that of the integers and the real numbers.
These are, in the words of John Lloyd, the bits that he does not understand.
Sets pervade mathematics. Basically every definition of a mathematical structure contains the phrase “… a set such that …”. The language and tools of Set Theory generally make it possible to formulate results efficiently.
It may therefore come as a bit of a surprise that the question “What is a set?” does not have a straightforward answer. That sounds strange because we generally recognise a set when we see one: thimbles, forks, railway-shares …,(but not care, hope and soap) you name it, someone will have a set (collection) of it.
However, in Mathematics we like precise definitions, so that at every moment it is clear what we are talking about. A word of warning is needed here, nicely illustrated by this quote from Goethe.
1005. Die Mathematiker sind eine Art Franzosen; redet man mit ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes.
Johann Wolfgang von Goethe, Maximen und Reflexionen, Nachlass, Über Natur und Naturwissenschaft
I do not have the illusion to know what Goethe actually meant to say with this and further study of his work may reveal that, but for me this quote is very apt all by itself. Many definitions of mathematical notions do not conform to the expectations of non-mathematicians. Things that are nigh on synonymous in the dictionary may have rather different meanings in mathematics.
To define what a set is we turn to two pioneers of the study of the infinite, Bernard Bolzano and Georg Cantor.
In his Paradoxieen des Unendlichen Bolzano wrote this on page 4, after a short introduction wherein he exlained the need for a definition of Menge.
Einen Inbegriff, den wir einem solchen Begriffe unterstellen, bei dem die Anordnung seiner Teile gleichgültig ist (an dem sich also nichts für uns Wesentliches ändert, wenn sich bloß diese ändert), nenne ich eine Menge;
In the translation of this work by Donald A. Steele and the above definition is rendered as follows.
An aggregate whose basic conception renders the arrangement of its members a matter of indifference, and whose permutation therefore produces no essential change from the current point of view, I shall call a set (Menge),
The very first words written by Georg Cantor in his Beiträge zur Begründung der transfiniten Mengenlehre are
Unter einer ,Menge` verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objecten m unserer Anschauung oder unseres Denkens (welche die ,Elemente` von M genannt werden) zu einem Ganzen.
In Zeichen drücken wir dies so aus:
M={m}
In the translation by Philip E. B. Jourdain we find:
By an “aggregate” (Menge) we are to understand any collection into a whole (Zusammenfassung zu einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects are called the “elements” of M.
In signs we express this thus:
M={m}
I think it is no coincidence that the notion `Menge’ was defined during investigations of the notion of `infinite’. At that moment the relations between the individuals that make up the whole are of secondary importance. And at some point one chooses one out of many synonyms &mdsah; collection, multitude, Mannigfaltigkeit, aggregate, set, verzameling, &hellip — and that becomes that name of the basic object of investigation.
If you read the definitions closely then you will see that they, strictly speaking, define nothing: both use a synonym, Inbegriff or Zusammenfassung, as a definition. However, Bolzano explicitly adds a condition (and Cantor does so implicitly, as witnessed by the rest of his paper) that was also mentioned above: the relations, if any, between the elements of the sets are not important. A few paragraphs before the definition Bolzano used the example of a broken tumbler; we tend to view that as different from that same tumbler before it was broken because the relations between the constituents have changed, as a set — of atoms, molecules — it has not changed.
It is this condition that tell us what the goal of Bolzano and Cantor undoubtedly was: delineate as sharply as possible about which objects they make their pronouncements. Bolzano’s definition was the summary of a long run-up where he discussed what properties a Menge should have. Cantor jumped right in because he had been considering sets for two decades already.
On a naïve level these definitions are quite workable because all that happens is that certain entities now have the label `set’ applied to them. Something like {1,2,3,4,5} is recognised by everyone as a “the set of natural numbers from 1 through 5”. And also sets with a description like {n ∈ N : n ≤ 10100} is fine, provided we have learned some of the language of mathematics. Here ∈ means `is element of’, ≤ means `less than or equal’ and N represents the set of natural numbers.
Mathematics differs from `daily life’ in one seemingly innocuous point: mathematicians give set status to a few things that some people do not recognise as sets. The empty set and sets with (exactly) one element are perfectly acceptable mathematically. But, if I were to tell you that I have a set of stamps and show you an album without any in it you would not consider me a stamp collector, nor if a were to show you just one stamp (right before I stick it on an envelope).
Mathematically speaking these are legitimate sets and they are also quite necessary because it would become quite cumbersome to exclude them as results of operations on sets. Think of equations. Very often we speak of solution sets and that would suddenly be illegal is the equation had no or just one solution? Really?
But still, this all assumes that we recognize a set when we see one: a collection of things thrown together between curly braces for a certain purpose. It’s the thirteen cards in your hand at bridge before you inspect and order them; it’s the points on a line where it is immaterial which point lies to the left or right of another point. All this does not tell us what a set is. For that we should define first what a collection is …
So, where does that leave us? The tools and language of Set Theory pervade mathematics and are quite powerful, yet we do not have a fully satisfactory definition of what a set actually is. For day-to-day mathematics that is no big problem because, as I said above, we recognise many familiar entities as `sets’ and treat them as such.
But what about those of us who want to know what a set really is? Who do not want to `recognise a set when they see it’? Well, we can satisfy them by setting up Set Theory purely logically and thus define what our objects are. The resulting `sets’ are not quite like those we learned to recognise but every one of our familiar sets has a faithful logical copy. This means that we can, with a bit of care, keep on using sets in the naïve way we have always done.
We may come back to that logical approach in a later post.
De eindexamens wiskunde A en B van de havo.
De eindexamens waren al een week geleden maar de blogsite van de TU had deze week inlogproblemen dus ben ik hier een beetje laat.
Ik heb de examens gemaakt en de uitwerkingen staan hier: wiskunde A en wiskunde B.
De examens kwamen op mij niet moeilijk over; op facebook leidden mijn opmerkingen over wiskunde A tot veel discussie, met hier en daar een kanttekening dat wat ik `niet moeilijk’ vond voor veel leerlingen onoverkomelijk bleek.
Wat ik van wiskunde B vond bleek minder controversieel.
Maandag komen de eindexamens van het vwo.
De koningin en de profeet
Via facebook kwam ik bij dit artikel uit The Poke: de Koningin van Engeland zou afstammen van de profeet Mohammed. Het refereert aan een stuk uit de Daily Mail van vorig jaar. Maar goed, is dit bijzonder?
Een nuttig gegeven in het artikel is dat we van de koningin 43 generaties terug moeten om bij de profeet te komen. Daar kunnen we mee rekenen.
Op deze pagina wordt met veel slagen om de arm geschat hoeveel mensen er ooit op aarde geleefd hebben. Dat zouden er zo’n 108 miljard zijn. Op die pagina staat een tabel met bevolkingsaaantallen voor diverse jaartallen. Daaruit kunnen we schatten dat er in de tijd van Mohammed niet veel meer dan 400.000.000 mensen op de hele aarde leefden.
Aan de andere kant: als we vanuit om het even welk persoon 43 generaties terug in de tijd gaan en consequent bij elke voorouder de naam van de vader en moeder op zouden schrijven, dan bevat elke nieuwe generatie twee keer zoveel namen als de voorgaande: twee ouders, vier grootouders, acht overgrootouders, enzovoort. De 43ste generatie bevat dan 243=8.796.093.022.208 namen.
Wat dan overduidelijk is dat er heel wat personen meer dan één keer in die 43ste generatie genoemd zullen worden: gemiddeld ruim 20.000 maal. Als je zo naar die getallen kijkt wordt het hoogst onwaarschijnlijk dat Mohammed niet een voorouder van de koningin is.
Er zijn natuurlijk geografische omstandigheden die personen uit bepaalde gebieden wat onwaarschijnlijker als voorouder maken, maar er is altijd veel verkeer tussen Europa en de Arabische wereld geweest. Ik hou het er op dat het helemaal niet bijzonder is dat er een lijntje loopt van Mohammed naar Elizabeth. Het zou wel knap zijn als ze echt zo’n lijntje zouden hebben gevonden.
Exacte oplossingen
Een veel voorkomende vraag op de wisfaq is: “Hoe los ik … op?” Op de plaats van de puntjes staat dan een vergelijking die maar niet tot een mooie oplossing wil leiden, zoals bijvoorbeeld -x2+4x-3 = sin(x). Het antwoord op de vraag is vaak: “Het kan niet exact, doe maar een numerieke benadering.” Maar wat betekent `exact’ eigenlijk?
Heel veel wiskundesommen komen uiteindelijk neer op het oplossen van een vergelijking, het invullen van een of meer getallen in een of andere uitdrukking, en/of het daarna vereenvoudigen van de uitkomst tot …, tot wat eigenlijk? Tot een compacte overzichtelijke uitdrukking waarvan wellicht ook makkelijk te controleren of het een oplossing van het probleem is. Wat een compacte overzichtelijke uitdrukking is varieert met de tijd. Het begint met natuurlijke getallen; een antwoord als `3′ is duidelijk en je kunt waarschijnlijk natellen of het klopt. Vrij snel komen (positieve) breuken bij het verdelen van dingen (traditioneel taarten) over personen: drie taarten over vijf personen eerlijk verdelen levert iedereen 3/5 taart op. Nog later komen er negatieve getallen bij, meestal uitgelegd als `schuld’.
Dat is allemaal nog redelijk overzichtelijk maar dan wordt het spannender: als je een vierkant met een oppervlakte van 2 m2 wilt maken dan heb je niks aan al die breuken, positief of niet. Om praktische redenen is het wel gewenst de lengte van de zijden van dat vierkant te benoemen, en dat heeft geleid tot een van de eerste afkortingen die je bij de wiskunde leert: √2. Dat getal is echt nieuw, niet te weer te geven als een breuk. Er is zelfs een heel Zebraboekje aan √2 gewijd.
Het interessante is dat na verloop van tijd dat symbool √ heel vertrouwd wordt en dat we het accepteren als ingredient in die `compacte overzichtelijke’ uitdrukkingen. Met de abc-formule als eerste hoogtepunt. Ondanks het feit dat √D niet meer is dan een afkorting van “het positieve reële getal waarvan het kwadraat gelijk is aan D”.
Een andere bekende afkorting is natuurlijk π: de verhouding tussen omtrek en diameter van een cirkel. Ook π is niet als breuk uit te drukken, erger nog: met π is algebraïsch helemaal geen goed garen te spinnen. Maar π komt in zoveel uitkomsten en formules voor dat het onderhand een vertrouwde vriend geworden is.
Op de middelbare school en later stijgt het aantal `vertrouwde vrienden’ snel, via allerlei nieuwe functies als sinus, cosinus, e-macht, logaritme, … Zo is de lengte van het stukje van de parabool met vergelijking y=x2 tussen de punten (0,0) en (1,1) gelijk aan
en niemand knippert met de ogen. Als je de echte betekenis van die uitdrukking wilt achterhalen zul je vrij diep de wiskunde in moeten duiken want hij hangt van afkortingen aan elkaar.
Even terug naar de vergelijking aan het begin. Heeft die vergelijking wel oplossingen? Ja, daar kun je je van overtuigen door de grafieken van het linker- en rechterlid even te schetsen; je ziet dan dat er een intervalletje is waarop -x2+4x-3 groter is dan sin(x) en de eindpunten van dat intervalletje zijn de oplossingen van de vergelijking. Is er een formule voor de linkeroplossing? Ja:
deze komt direct uit het bewijs van de tussenwaardestelling. Die stelling zegt dat dat minimum bestaat, noem het even a, en dat a daadwerkelijk aan de vergelijking voldoet. Voor wie dit geen mooie formule vindt, bedenk dan dat √2 niets meer is dan een afkorting voor
hetwelk volgens diezelfde tussenwaardestelling bestaat.
Met a en √2 is goed te werken; je kunt ze in allerlei uitdrukkingen stoppen en die weer proberen te vereenvoudigen. In het geval van √2 vervang je telkens (√2)2 door 2; probeer maar eens aan te tonen dat
Wat a betreft: telkens als je sin(a) ziet kun je daar -a2+4a-3 van maken (of omgekeerd); dat gebeurt niet zo vaak en daarom zal a lang niet zo vertrouwd worden als √2 dat al eeuwen is.
BMI en de divergentiestelling? Nou, nee.
Op de wisfaq een vraag: Wat is de link tussen de BMI en de divergentiestelling? Die link is er niet.
Even recapituleren:
- De body mass index (BMI) of Quetelet index van personen is hun massa gedeeld door het kwadraat van hun lengte, in kg/m2.
- De divergentiestelling verbindt twee integralen, de een over een lichaam, de ander over de rand van dat lichaam. Losjes gesproken laat het zien welke functie zorgt voor de productie van hetgeen via een vectorveld door de rand naar buiten ontsnapt.
Wat hebben die twee met elkaar te maken? Nou, niks. Je zou denken dat het iets met warmtestroming door de huid en de productie van energie in het lichaam te maken zou kunnen hebben maar de eenheden kloppen daarvoor van geen kant.
De geschiedenis van de BMI laat echter nog veel duidelijker zien dat er geen verband is. Het de zin en onzin van de BMI is tien jaar geleden al mooi door Keith Devlin beschreven in Do You Believe in Fairies, Unicorns, or the BMI?; ik heb daar niets aan toe te voegen.
Een belangrijk citaat uit Devlin’s stuk: “The BMI was formulated, by a mathematician, not a medical physician, to provide a simple, easy-to-apply mathematical formula to give a broad, society-level measure of weight issues. It has absolutely no scientific or medical basis. It is based purely on a crude statistical analysis. It measures a general society trend, it does not predict.” Daar is dus geen divergentiestelling aan te pas gekomen.
Los op. Of toch niet?
Een aardige vraag op de wisfaq die laat zien dat een opgave goed lezen ook belangrijk is.
De vraagsteller had moeite met deze vraag:
“Toon aan dat er een reëel getal t bestaat zodat voor de functie g(x)=(x-a)2(x-b)2+x geldt dat g(t)=(a+b)/2.”
Het oplossen van de vergelijking (t-a)2(t-b)2+t=(a+b)/2 lukte niet helemaal.
Maar hoogstwaarschijnlijk was het helemaal niet de bedoeling die vergelijking op te lossen: de opgave was namelijk “toon aan dat zo’n t bestaat”, niet “bepaal zo’n t”. Dat de vraagsteller een student van een universiteit is suggereert dat het hiet om een toepassing van de Tussenwaardestelling gaat. Die stelling spreekt voor velen bijna voor zichzelf maar een van de eersten, zo niet de eerste, die doorhad dat er iets te bewijzen was was Bernard Bolzano. In een artikel met de welluidende titel Rein analytischer Beweis des Lehrsatzes daß zwischen je zwey Werthen, die ein entgegengesetzetes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege legde hij uit dat de volgende stelling wel degelijk een bewijs nodig had:
Laat f en φ twee continue functies zijn en a en b twee reële getallen zo dat f(a)<φ(a) en f(b)>φ(b); dan ligt er een getal c tussen a en b met f(c)=φ(c)
In een tijd dat `continu’ meetkundig werd geïnterpreteerd als `de grafiek is een ononderbroken kromme’ leek het duidelijk dat de grafieken van f en φ elkaar tussen a en b zouden moeten snijden. Bolzano waste zijn tijdgenoten grondig de oren over deze misvatting; hij wilde een echt analytisch bewijs en geen `kijk maar, er is een snijpunt’. Bolzano had namelijk ook al door dat niet elke continue functie een makkelijk te tekenen grafiek had: hij heeft ook een van de eerste continue nergens differentieerbare functies geconstrueerd. In het artikel van Bolzano vinden we een analytische definitie van continuïteit en een bewijs van de tussenwaardestelling dat zo in de huidige boeken opgenomen kan worden (en eigenlijk opgenomen is).
Met deze stelling in de hand is de opgave zo opgelost: voor de functie van de vraag geldt g(a)=a en g(b)=b; het getal gemiddelde (a+b)/2 van a en b ligt tussen a en b, dus toepassing van Bolzano’s stelling met g en de constante functie ψ met waarde (a+b)/2 levert het bestaan van een t tussen a en b met g(t)=(a+b)/2.
Overigens kan de vergelijking wel opgelost worden: er is een oplosformule voor de vierdegraadsvergelijking maar die staat vrijwel nergens op het programma van een analysecursus.
More on machine learning and CH
A few days ago I wrote about a paper establishing an independence result in the field of machine learning. Here I offer a few more comments.
In the paper the authors comment on the relation between their result and actual machine learning. That relation may seem tenuous because none of the functions involved in the arguments is related to any kind of algorithm.
Indeed the constructions of the compression schemes are very non-constructive in that they use repeated applications of the Axiom of Choice.
Now the inequality 2ℵ0>ℵω implies there are no compression schemes whatsoever. But it may be of interest to know that consistent examples of compression schemes must be nonconstructive. It turns out that, with the aid of a few standard results from Descriptive Set Theory it is relatively easy to show outright that there are no Borel measurable monotone compression schemes and hence no Borel measurable learning functions for the class of problems studied in the paper mentioned above either.
The details can be found in this note.
Machine Learning and the Continuum Hypothesis
Not even Machine Learning is safe from Set Theory, or so it seems. On the website of the journal Nature there is an article about a paper in Nature Machine Intelligence that connects a certain kind of learnability to the Continuum Hypothesis. The conclusion of the paper is that certain abstract learnability questions are undecidable on the basis of the normal ZFC axioms of Set Theory.
The article tries to explain what is going on but seems to confuse two disparate things: Gödel’s (First) Incompleteness Theorem on the one hand and the undecidability of the Continuum Hypothesis on the other hand.
The first is a very general statement about first-order theories; it states that for every theory that satisfies a number of technical conditions there are statements that have no formal proof and neither do their negations. Elementary number theory is subject to this theorem, as is ZFC Set Theory.
The second is a Set-theoretical statement for which we can prove that there is no formal proof, nor for its negation. It is also more interesting than Gödel’s statements; the latter `simply’ assert their own unprovability, whereas the Continuum Hypothesis is a fundamental statement/question about the set of real numbers.
The confusion manifests itself when the Continuum Hypothesis is called a paradox. It is not. The statements from the Incompleteness Theorem on the other hand are usually likened to the Liar Paradox in that “This formula if unprovable” looks a lot like the paradox that is “This sentence is false”.
The paper itself also alludes to the Incompleteness Theorem; it even states that is used in the argument. It is not. No use is made of Gödel’s abstract unprovable sentences.
The Set Theory
So, what is the Set Theory in the paper? The learnability question is shown to be equivalent to the existence of a natural number m and a map η from the family of m-element subsets of [0,1] to the family F of finite subsets of [0,1] that satisfies the following condition: if A is a subset of [0,1] with m+1 elements then it has a subset B with m elements such that η(B) contains A.
The main theorem of the paper states that an arbitrary set X admits such a map with m=k+1 if and only if X has cardinality at most ℵk.
If the Continuum Hypothesis holds then [0,1] has cardinality ℵ1, hence there is a map as required with m=2. More generally there is a map as required if the cardinality of [0,1] is equal to ℵk for some natural number k. These possibilities do not lead to contradictions, hence neither does the learnability statement. On the other hand, the statement that the cardinality of [0,1] is larger than all these ℵk does not lead to contradictions either, hence neither does the negation of the learnability statement.
The derivation of the main statement parallells that of the main result of the paper Sur une caractérisation des alephs by Kuratowski from 1951: a set X has cardinality at most ℵk if and only if its power Xk+2 can be written as the union of k+2 sets A1, …, Ak+2 such that for every i and every point (x1,…,xk+2) in the power the set of points y in Ai that satisfy yj=xj for j≠i is finite; in Kuratowski’s words “Ai is finite in the direction of the ith axis”.
Indeed one can even construct of a map η for m=k+1 from this decomposition of the canonical set ωk of cardinality ℵk.
For notational simplicity we take k=2, so m=3, and ω24 has a decomposition into four sets A1, A2, A3, and A4. Given a subset F of ω2 of 3 elements enumerate it in increasing order: x1<x2<x3. The set η(F) will consist of F itself together with
- all x for which (x,x1,x2,x3) belongs to A1,
- all x for which (x1,x,x2,x3) belongs to A2,
- all x for which (x1,x2,x,x3) belongs to A3,
- all x for which (x1,x2,x3,x) belongs to A4
To see that this works let G be a four-element subset of ω2, enumerate it as y1<y2<y3<y4. Then (y1,y2,y3,y4) belongs to one of the four sets, say it belongs to A2; then G is a subset of η({y1,y3,y4}): the point y2 is included in the second line in the list above.
Note. The proof of the main theorem (Theorem 1) of the paper is not quite correct: it fails for k=1 for example as one encounters the cardinal number ℵ-1. Worse: in that case the ordering <1 seems to have order type ω1 and ω0 simultaneously. All this can be repaired with a better write-up.
Het Probleem uit Katowice
De klimaatttop in Katowice verliep/verloopt moeizaam. Maar het klimaat is niet het enige probleem dat aan Katowice verbonden is.
Het probleem uit Katowice gaat over iets totaal anders. Eén manier om het in te leiden is als volgt. Een eenvoudige opgave: stel dat twee verzamelingen evenveel punten hebben, bewijs dat ze evenveel deelverzamelingen hebben.
Dat klinkt voor de hand liggend en het bewijs is, zeker voor een eerstejaarsstudent, niet moeilijk. De juiste wiskundige formulering van `X en Y hebben evenveel elementen’ is er bestaat een bijectie (ook wel een-een-correspondentie genoemd) f:X→Y tusen de twee verzamelingen. Uit die bijectie maak je met gemak een bijectie F tussen de families deelverzamelingen: F(A)=f[A].
Het omgekeerde probleem zou zijn: stel dat twee verzamelingen evenveel deelverzamelingen hebben, bewijs dat ze evenveel punten hebben.
Dat is een stuk lastiger op te lossen; het lukt nog wel voor eindige verzamelingen want een verzameling met n punten heeft 2n deelverzamelingen en als 2m=2n dan volgt m=n. Echter, dat gebruikt extra informatie, meer dan alleen het bestaan van de bijectie F tussen de families deelverzamelingen. En, geloof het of niet: met alleen de informatie dat zo’n F bestaat is de opgave niet te maken. Dat volgt uit het werk dat Paul Cohen heeft gedaan bij zijn deel van de oplossing van Cantor’s Continuumhypothese: daarbij creërde hij een situatie met twee oneindige verzamelingen met evenveel deelverzamelingen maar niet met evenveel punten.
De som wordt maakbaar als we aannemen dat de bijectie wat meer structuur heeft; als je bijvoorbeeld eist dat F en zijn inverse de deelverzamelingrelatie bewaren, dat wil zeggen A⊂B dan en slechts dan als F(A)⊂F(B), dan kun je wel een bijectie tussen de verzamelingen X en Y maken: F moet namelijk de éeacute;npuntsverzamelingen op elkaar afbeelden en dat geeft automatisch de gewenste bijectie.
In de wiskunde is het soms zo dat we `kleine’ verzamelingen verwaarlozen; zo kunnen we afspreken dat we verzamelingen die maar een eindig aantal punten verschillen als gelijk beschouwen. Dat nu leidt ons tot Het Probleem van Katowice: als je weet dat er afbeelding is die bijectief is en ⊂ respecteert, waarbij eindige verschillen er niet toe doen, kun je dan een bijectie tussen de gegeven verzamelingen maken?
Dat probleem is een stuk moeilijker dan de andere maar het is opgelost, bijna: het antwoord is bijna altijd ja, er zijn twee oneindige verzamelingen, met verschillende aantallen elementen, waarvoor we nog niet hebben kunnen bewijzen dat zo’n bijna-bijectie niet bestaat.
Voor wie meer wil weten: hier is een overzicht van het probleem. Met een waarschuwing: zonder een behoorlijke dosis wiskundige basiskennis is het artikel lastig te lezen.
En waarom is dit Het probleem uit Katowice? Het werd opgeworpen door een student aan de Silezische Universiteit in Katowice en omdat het overgebleven geval zo weerbarstig is gebleken heeft het probleem onder wiskundigen deze naam gekregen.
Een vierkante seconde
Een tip voor een niet-standaard uitstapje in Delft: ga een vierkante seconde bekijken.
Delft heeft een mooie binnenstad maar in de buitenwijken kun je ook aardige dingen zien. Neem tram 1 richting Tanthof, stap uit bij de halte Van der Slootsingel, loop de straat met die naam helemaal uit en ga dan rechtsaf het park Buitenhof in. Op een zacht glooiende helling ligt het, een kunstwerk met de naam Een Vierkante Seconde. Je moet echt de helling op want anders zie je de stenen die het vierkant vormen niet.
Waarom `vierkante seconde’?
Als je nauwkeurig wil aangeven waar je bent dan geef je je coördinaten door met behulp van het systeem dat daar al een paar eeuwen voor gebruikt wordt: lengte- en breedtegraden. Op de aarde zijn (denkbeeldig) twee stelsels lijnen getrokken: van de noord- naar de zuidpool (meridianen), en loodrecht daarop, evenwijdig aan de evenaar dus (parallellen).
De meridiaan die door the Royal Observatory in Greenwich loopt heet de nulmeridiaan; samen met de evenaar vormt hij een soort assenkruis, met de evenaar als x-as en de nulmeridiaan als y-as.
Het snijpunt van de nulmeridiaan en de evenaar is de oorsprong. In plaats van x- en y-coördinaten spreken we van, respectievelijk, lengte en breedte en in plaats van positief of negatief zeggen we ooster- en westerlengte, en noorder- en zuiderbreedte.
De eenheid die gekozen is om lengte en breedte uit te drukken is de graad; dat is natuurlijk omdat alle lijnen (delen van) cirkels zijn. Dat is ook handig omdat de parallellen niet allemaal evan lang zijn: de `parallel’, bijvoorbeeld, aan de noordpool bestaat uit maar één punt.
Beide assen zijn in graden verdeeld. De evenaar in twee keer 180 graden: west en oost, als je de nulmeridiaan doortrekt krijgt je de meridiaan op 180° west en oost. De nulmeridiaan is in twee keer 90° verdeeld, noord en zuid.
Nu is nulmeridiaan van de evenaar tot de noordpool 10.000 km lang (per definitie) en dus is één graad ongeveer 111 km lang. Dat is nog vrij veel en daarom zijn de graden weer in 60 mminuten verdeeld, die 60 is een overblijfsel van de 60-tallige schrijfwijze voor getallen uit het oude Babylon. Een minuut langs de nulmeridiaan is ongeveer 1850 m lang; en dat is nu net de definitie van een zeemijl.
De minuten zijn zelf weer in 60 seconden verdeeld en een seconde langs de nulmeridiaan is dus zo’n 30 m lang.
Langs de parallellen worden de graden, minuten en seconden steeds korter. Als je in Park Buitenhof aankomt en het kunstwerk bekijkt zul je zien dat het er niet als een vierkant van 30 bij 30 meter uitziet. Je kunt aan het kunstwerk Geografische Plaatsbepaling Delft (dat is de officiële naam) zien hoeveel korter een seconde op onze breedte geworden is. Het kunstwerk is namelijk een vierhoek die door twee parallellen en door twee meridianen begrensd is.
Op de foto’s van de vier hoeken kun je zien welke lijnen dat zijn:
- de meridianen op
- 04° 20′ 07” O. L. en
- 04° 20′ 08” O. L.,
- en de parallelen op
- 51° 59′ 29” N. B. en
- 51° 59′ 30” N. B.
Ik ben de hele vierhoek rondgelopen; in de noord-zuidrichting had ik dertig stappen nodig en in de oost-westrichting maar negentien.
Voor de wiskundigen: Welke functie bepaalt de lengte van een seconde langs een parallel? Kloppen mijn gemeten lengten ongeveer?
Andere zaken
In het blad Pythagoras is ook al eens een stukje over de vierkante seconde verschenen. Naar aanleiding hiervan ontdekte ik dat je op moet passen als je met een GPS-apparaat in de hand op zoek gaat naar het kunstwerk. Toen de vierhoek werd gelegd (1970) gebruikte men in Nederland het systeem ED50, sindsdien is het systeem WSG 84 in gebruik genomen. Het verschil tussen die systemen is ongeveer 100 meter; met een apparaat dat op WSG 84 is ingesteld loop je het risico in een van de sloten rond het park terecht te komen. In dit document kun je meer lezen over het omrekenen tussen de twee systemen.
In een video van Ionica Smeets over de vierkante seconde wordt hier voor gewaarschuwd. Naar aanleiding van die video is er een Geocache bij het kunstwerk gemaakt.
Op de Kunstwachtwebsite kun je ook over Geografische Plaatsbepaling lezen. En op de website van een van de makers, Nelis Oosterwijk, kun je wat ontwerpschetsen zien.
Recent Comments