Los op. Of toch niet?

Een aardige vraag op de wisfaq die laat zien dat een opgave goed lezen ook belangrijk is.

De vraagsteller had moeite met deze vraag:

“Toon aan dat er een reëel getal t bestaat zodat voor de functie g(x)=(x-a)2(x-b)2+x geldt dat g(t)=(a+b)/2.”

Het oplossen van de vergelijking (t-a)2(t-b)2+t=(a+b)/2 lukte niet helemaal.
Maar hoogstwaarschijnlijk was het helemaal niet de bedoeling die vergelijking op te lossen: de opgave was namelijk “toon aan dat zo’n t bestaat”, niet “bepaal zo’n t”. Dat de vraagsteller een student van een universiteit is suggereert dat het hiet om een toepassing van de Tussenwaardestelling gaat. Die stelling spreekt voor velen bijna voor zichzelf maar een van de eersten, zo niet de eerste, die doorhad dat er iets te bewijzen was was Bernard Bolzano. In een artikel met de welluidende titel Rein analytischer Beweis des Lehrsatzes daß zwischen je zwey Werthen, die ein entgegengesetzetes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege legde hij uit dat de volgende stelling wel degelijk een bewijs nodig had:

Laat f en φ twee continue functies zijn en a en b twee reële getallen zo dat f(a)<φ(a) en f(b)>φ(b); dan ligt er een getal c tussen a en b met f(c)=φ(c)

In een tijd dat `continu’ meetkundig werd geïnterpreteerd als `de grafiek is een ononderbroken kromme’ leek het duidelijk dat de grafieken van f en φ elkaar tussen a en b zouden moeten snijden. Bolzano waste zijn tijdgenoten grondig de oren over deze misvatting; hij wilde een echt analytisch bewijs en geen `kijk maar, er is een snijpunt’. Bolzano had namelijk ook al door dat niet elke continue functie een makkelijk te tekenen grafiek had: hij heeft ook een van de eerste continue nergens differentieerbare functies geconstrueerd. In het artikel van Bolzano vinden we een analytische definitie van continuïteit en een bewijs van de tussenwaardestelling dat zo in de huidige boeken opgenomen kan worden (en eigenlijk opgenomen is).

Met deze stelling in de hand is de opgave zo opgelost: voor de functie van de vraag geldt g(a)=a en g(b)=b; het getal gemiddelde (a+b)/2 van a en b ligt tussen a en b, dus toepassing van Bolzano’s stelling met g en de constante functie ψ met waarde (a+b)/2 levert het bestaan van een t tussen a en b met g(t)=(a+b)/2.

Overigens kan de vergelijking wel opgelost worden: er is een oplosformule voor de vierdegraadsvergelijking maar die staat vrijwel nergens op het programma van een analysecursus.

Be Sociable, Share!

Leave a Reply

Your email address will not be published. Required fields are marked *

© 2011 TU Delft