KP Hart
Hoeveel reële getallen?
Een paar maanden geleden stond er een artikel in Quanta magazine over het aantal reële getallen, een vraag die verzameltheoreten al bijna 150 jaar bezig houdt.
Het begin van het artikel beschrijft in de ietwat hijgerige stijl van Quanta de vermeende implicaties van een recent resultaat van David Asperó en Ralf Schindler: een implicatie tussen twee niet-triviale verzameltheoretische principes.
Die implicaties betreffen Cantor’s ContinuumHypothese. De oorspronkelijke formulering had te maken met het indelen van de oneindige deelverzamelingen van de reële rechte R in klassen door middel van bijecties (een-op-eencorrespondenties). Cantor dacht/vermoedde dat er voor een oneindige deelverzameling, X, van R maar twee mogelijkheden ware: in bijectie met R zelf of in bijectie met de verzameling N der natuurlijke getallen.
Later kwam er een nieuwe versie van dat vermoeden. Cantor had namelijk een meetlat van kardinaalgetallen ontwikkeld om aan oneindige verzamelingen ook een “aantal elementen” toe te kunnen kennen. Die getallen werden genoteerd als ℵα, waarbij α een andere meetlat doorloopt. Cantor’s vermoeden kwam neer op de bewering dat zijn toekenning van “aantal elementen” voor R het resultaat ℵ1 zou geven. Wat we nu weten is dat de huidige axioma’s van de verzamelingenleer niet sterk genoeg zijn om te bewijzen dat het “aantal elementen” van R inderdaad gelijk is aan ℵ1 (het kleinst mogelijke), en ook niet sterk genoeg om te bewijzen dat dat niet zo is.
Door de jaren heen hebben verzameltheoreten geprobeerd nieuwe axioma’s te formuleren die “natuurlijk” zijn en die een definitief antwoord geven op de vraag naar het “aantal elementen” van R. Het resultaat van Asperó en Schindler verbindt twee van dergelijke axioma’s. Het ene heet Martin’s Maximum++ en het andere gaat onder de weinig informatieve naam (*). Beide impliceren dat het “aantal elementen” van R gelijk is aan ℵ2. Dat is n kardinaalgetal hoger dan Cantor hoopte en zegt dat er voor de oneindige deelverzamelingen van R nog een derde mogelijkheid is naast de twee die hierboven genoemd zijn.
Wat Asperó en Schindler hebben laten zien is dat (*) een gevolg is van Martin’s Maximum++. Wie het artikel leest zal zien dat de formuleringen van de twee principes en het bewijs van de implicatie verre van eenvoudig zijn. Dat bewijs mag met een gerust hart een mijlpaal genoemd worden.
Maar brengt het ons dichter bij de oplossing van Cantor’s probleem? Dat is nog maar de vraag, zoals gezegd: de principes zijn niet eenvoudig en hun consistentie met de gebruikelijke axioma’s vergt nogal wat machinerie. Daar hebben we het nog niet over gehad: het is mooi dat die principes een oplossing van Cantor’s probleem opleveren maar dat helpt niet als hun negaties uit de gebruikelijke axioma’s af te leiden zouden zijn. Dat is gelukkig niet zo maar de moeite die het kost dat vast te stellen laat ze wat minder natuurlijk klinken.
Aan het eind van het stuk in Quanta wordt een even natuurlijk (of even onnatuurlijk zo u wilt) principe besproken dat Cantor’s probleem nu juist oplost zoals Cantor dat wilde.
Wat is nu de conclusie? Er is in het bouwwerk van implicaties tussen allerlei verzameltheoretische principes een belangrijke pijl toegevoegd. Maar die nieuwe pijl brengt ons (in tegenstelling tot de titel van het artikel) niet echt dichterbij een oplossing van Cantor’s probleem. De nieuwe pijl maakt de principes die hij verbindt niet automatisch meer natuurlijk dan andere potentiële axioma’s.
Eindexamen wiskunde B vwo 2021-07-07
Eergisteren was de derde gelegenheid voor wiskunde B (vwo). De opgaven staan op examenblad.nl. Ik heb de opgaven gemaakt en eigenlijk weinig commentaar, ze leken mij goed te doen. Zelfs de `contextopgave’ was redelijk, zonder al te veel tekst.
Eindexamen wiskunde B vwo 2021-06-18
Afgelopen vrijdag was de tweede zitting wiskunde B voor het vwo. De opgaven zijn hier te vinden. Ik heb de opgaven gemaakt en van commentaar voorzien; er viel me eigenlijk niet veel op.
Eindexamens wiskunde A en B, havo, 2021-05-26
Gisteren waren de eindexamens wiskunde A en wiskunde B van de havo (opgaven onder de links). Ik heb de opgaven bekeken en ik wil hier wat commentaar leveren.
Wiskunde A: twaalf bladzijden tekst met 24 vragen. In voorgaande jaren heb ik het examen wel eens gemaakt en de individuele vragen van commentaar voorzien maar daar heb ik nu geen tijd genoeg voor. En ik moet zeggen: al lezende verging mij de lust de sommen te maken; heel veel tekst met vragen die vaak neerkomen op, na enige reflectie, indrukken van de juiste knoppen op een rekenmachine. Er waren uitzonderingen: vraag 16 vraagt welk plaatje van een kansverdeling hoort bij “hoog gemiddelde, lage mediaan”; vraag 22 wil een rechtvaardiging zien van coefficienten in een, op het eerste gezicht, nogal rare vergelijking .
Op de eerste bladzijde moest ik even slikken: daar werd gesproken over “tweemaal zo dichtbij” en “hoeveel keer zo dichtbij” bij een verhaal over het testen van het gezichtsvermogen. Bij mijn weten is ‘dichbijheid’ geen SI-eenheid en ik vind het verdubbelen van dichtbijheid nogal dubbelzinnig. Op dit blog heb ik het ook al eens over ‘twee keer zo langzaam‘ gehad, wat hetzelfde zou moeten betekenen als ‘de halft langzamer’.
Wiskunde B: twaalf bladzijden tekst met 17 vragen (niet alle bladzijden waren geheel gevuld). Een mix van ‘echte’ wiskundevragen en wat stukken met meer tekst.
De ‘echte’ vragen gingen over functies, cirkels en lijnen, sinusoiden, … Het zag er, voor mij, niet moeilijk uit. Een enkele vraag was wel er makkelijk, vraag 7 was zo voorgekauwd dat alleen nog u3=64 opgelost moest worden.
Er waren twee vragen met tekst: een paginalang verhaal over roeimachines leidde tot twee aardige vragen over driehoeken, en aan het eind twee vragen over hardlooptijden waar de grootste klus leek te zijn het opstellen van de juiste vergelijkingen.
Eindexamen wiskunde A vwo 2021-05-17
Ik heb naast het examen wiskunde B nu ook het examen Wiskunde A gemaakt en van commentaar voorzien.
De opgaven staan op examenblad.nl en mijn uitwerkingen staan op deze plek.
In mijn uitwerkingen staan opmerkingen over de individuele opgaven. Ik wil het hier nog even over het examen als geheel hebben. Er was ontzettend veel tekst en veel van die tekst deed er niet toe. Een extreem voorbeeld was de laatste opgave: twee a4-tjes tekst met aan het eind niet veel meer dan een rekensom. Ik loop het examen even deel voor deel door.
Linkshandigheid en ronde getallen
Drie pagina’s met vijf vragen geïnspireerd(?) door een onderzoek uit 2013 dat zou hebben aangetoond/bevestigd dat linkshandige mensen vaker ronde getallen zouden noemen bij vragen naar aantallen. De rondheid van getallen zou volgens de formule van Sigurd bepaald zijn.
Ik dacht dat dit uit de duim gezogen was maar het onderzoek heeft echt plaatsgevonden; lees erover in PLOS One. En Bengt Sigurd was een Zweedse taalkundige die in 1988 een artikel over Round Numbers publiceerde.
De extra tekst wekt hoge verwachtingen maar de uiteindelijke opgaven zijn veelal niet echt moeilijk.
Draaiend huis
Na een lege pagina gaan we naar Tilburg, het draaiende huis van John Körmeling. Dat huis is aanleiding tot een vier vragen over roterende objecten en een sinusfunctie.
Mathematical Bridge
Een brug in Cambridge geeft ons drie vragen over een cirkel en een raaklijn daar aan.
The International
Goed voor vijf vragen. Het gaat over prijzengelden en teamsamenstellingen by on-line gaming: E-sports. Drieënhalve pagina tekst voor vijf korte vragen. Wel een mix: exponentiële groei, wat combinatoriek, en functieonderzoek. Maar de wiskundige inhoud had met veel minder omhaal gevraagd kunnen worden. Op twitter werd al een poging gedaan.
Hier een poging. De inleiding van de vraag met onderaan mijn iets kortere versie ervan. pic.twitter.com/czw6hTod8g
— Casper Hulshof 👻 (@CasperHuls) May 19, 2021
Huurprijzen in New York
Drie vragen: twee over exponentiële groei en een grafiek-leesvraag.
Inkomensongelijkheid
Twee volle bladzijden met aan het eind één rekensom. Ik had eerst niet door dat de vraag ging over het verschil van twee soorten inkomensverschillen. Er was één symbool, S, voor een inkomensverschil en de vraag had het over “het verschil tussen de S bij het secundaire inkomen en die bij het primair inkomen”.
En toch …
Het is makkelijk grappen maken (of klagen) over dit soort examens met lappen tekst waar de sommen soms aan de haren bijgesleept lijken. Maar het is een belangrijke vaardigheid: uit een lap tekst de juiste dingen halen om verder mee te werken. De vraag is wel of je dat op deze manier op een moment met allerlei extra spanning moet gaan zitten toetsen.
wiskunde vmbo GL en TL 2021
Op twitter werd ik gevraagd ook eens naar het examen uit de titel te kijken. Dat heb ik gedaan.
De opgaven zijn weer op examenblad.nl te vinden. Mijn uitwerkingen en commentaar staan op deze plek.
Ik heb geen ervaring met wiskunde op het vmbo, dus ik zag eigenlijk voor het eerst zo’n examen. Wat getest werd was een mix van elementaire rekenvaardigheden (soms was optellen/aftrekken/vermenigvuldigen/delen genoeg) en wat moeilijker zaken zoals goniometrie en meetkunde, en werken met exponentiele zaken. Allemaal dingen waarvan je zou willen dat iedereen wat kaas van gegeten heeft.
Waar ik niet helemaal achter kwam is hoe de sommen gedaan zouden moeten worden; het correctievoorschrift was daarvoor te summier. Mijn oplossingen zijn waarschijnlijk niet standaard.
Eindexamen wiskunde B vwo 2021-5-17
Het eindexamen wiskunde B (vwo) werd gisteren afgenomen. De opgaven te vinden op examenblad.nl
Ik heb het examen gemaakt en van opmerkingen voorzien de uitwerking is te vinden op mijn website. Het leek mij goed te doen.
Hogere Machten
Gisteren bekeken we een weergave in woorden van een kansberekening in een column van Maarten Keulemans. Vandaag kijken we even naar die berekening zelf en hoe je snel iets over de 5000ste macht van een breuk als 9999/10000 kunt zeggen.
Even ter herinnering:
En het protest op De Dam? Misschien had men gewoon geluk, berekende epidemioloog Frits Rosendaal (LUMC). ‘De kans om corona te hebben, was op dat moment klein, ongeveer een op tienduizend’, stelt Rosendaal. ‘Dat maakt de kans dat van de 5.000 aanwezigen er een of meer besmettelijk waren, op dat moment 39 procent: 1 min 9.999 gedeeld door 10.000, tot de macht 5.000. Vandaar dat er niks gebeurd is.’
Gisteren hebben we gezien dat de te berekenen kans er zo uit moet zien:
Nu kun je die macht in een rekenmachientje stoppen en als dat goed geprogrammeerd is krijg je ongeveer 0,6065, en dat geeft inderdaad, afgerond, een kans van 39 procent.
Met de juiste formules kun je bijna uit het hoofd een goede onderschatting van de macht maken, en daarmee een overschatting van die kans. De eerste formule is een ongelijkheid:
Deze ongelijkheid heeft een naam: De Ongelijkheid van Bernoulli, deze geldt voor alle x-en groter dan -1 (en ongelijk aan 0), en alle nauurlijke getallen. Als we 9999/10000 schrijven als 1-1/10000 kunnen we x=-1/10000 nemen, en n=5000, met als resultaat
Zonder al te veel moeite zien we dat de kans in ieder geval kleiner dan ½ was. Voor dit soort schattingen is de Ongelijkheid van Bernoulli een mooi stuk gereedschap om bij de hand te hebben.
Wat scherper
Kan het beter? Ja natuurlijk. Wat extra kennis over over de rij (1-1/n)n vertelt ons dat
en daaruit vinden we dan (met een relatieve fout van niet meer dan 0,0001):
Hierin is e het grondtal van de natuurlijke logaritme.
Onze macht is dan ongeveer de wortel uit 1/e; en daar hebben we een reeks voor die iedere eerstejaars wiskundestudent leert:
En de eerste paar termen geven ons een antwoord dat al heel dicht bij het resultaat van het rekenmachientje ligt.
Binomium
Voor degenen die het Binomium van Newton kennen (en beheersen): schrijf de eerste paar termen van de uitgewerkte macht maar eens op en vergelijk met de som voor 1/√e.
Spreken met haakjes
In een column van Maarten Keulemans in de Volkskrant werd aan het eind even snel aangegeven hoe groot de kans was dat er bij de Black-Live-Matter demonstratie op 2 juni iemand was die met corona besmet was. Aan het eind gebeurde iets dat mij op het verkeerde been zette.
Daar stond namelijk dit
En het protest op De Dam? Misschien had men gewoon geluk, berekende epidemioloog Frits Rosendaal (LUMC). ‘De kans om corona te hebben, was op dat moment klein, ongeveer een op tienduizend’, stelt Rosendaal. ‘Dat maakt de kans dat van de 5.000 aanwezigen er een of meer besmettelijk waren, op dat moment 39 procent: 1 min 9.999 gedeeld door 10.000, tot de macht 5.000. Vandaar dat er niks gebeurd is.’
Ik heb de zinsnede waar ik over struikelde even rood gemaakt. Het gaat mij om die komma.
Voor de komma staat dus “1 min 9.999 gedeeld door 10.000” en na de komma “tot de macht 5.000”. Die komma had voor mij de functie van haakjes, en met Mijnheer Van Dalen aan mij zijde las ik het gedeelte ervoor als
en met de komma als haakjes las ik
en daar staat gewoon 0,00015.000 en dat is 10-20.000, veel kleiner dan 0,39 dus.
Dat was niet de bedoeling. De bedoeling was dat de haakjes heel anders stonden, namelijk zo:
Dat is nog lastig in zo’n snelle zin te formuleren; als ik dit op college zou doen zou ik het natuurlijk op het bord schrijven maar soms spreek ik het uit voor ik het opschrijf. Ik zou er dit van maken: “1 min de 5000ste macht van: 9999 gedeeld door 10000”. En bij die “9999 gedeeld door 10000” zou ik de haakjes met mijn armen uitbeelden.
Morgen zullen we even naar die 5000ste macht kijken: hoe kun je snel zien dat hij groter dan een half is? En dus die kans kleiner dan een half?
Het laatste cijfer
Op twitter werd gevraagd naar het laatste cijfer van het getal van Graham. Grappig genoeg heeft dat een redelijk eenvoudig antwoord.
In deze coronatijden krijgen ouders vragen van hun kinderen die deze meestal aan de onderwijzer(es) vragen, zoals
waarom eindigt dat op een 7, en niet op een 9 of een 0? Daar hield onze lokale kennis op, dus hopelijk weet jij raad @ionicasmeets ?
— Mirjam070 (@MvL070) April 5, 2020
Nu is het getal van Graham het resultaat van een ongelooflijk aantal malen machten van 3 nemen, in een toren van 3-en. Het resulterende getal is nog groter. Maar hoe zou je het laatste cijfer van dat getal kunnen bepalen? Dat is eenvoudiger dan het lijkt. We doen het in stappen.
Om te beginnen het getal is een macht van 3 en als we de eerste paar machten van 3 opschrijven, en alleen het laatste cijfer noteren vinden we 3, 9, 7, 1, 3, 9, 7, 1, … Dat dit zich zo blijft herhalen wordt duidelijk als je je realiseert dat het laatste cijfer van 3×n alleen van het laatste cijfer van n afhangt.
Welke van die vier cijfers is het nu? Welnu de exponent van het getal is weer een macht van drie en dus oneven. Dat betekent dat we alleen een 3 of een 7 als mogelijkheid overhouden. Als we van die exponent de rest kunnen vinden bij deling door 4 weten we welk van de twee het is.
Schrijf die resten maar op: 31 heeft rest 3; 32 heeft rest 1; 33 heeft rest 3; 34 heeft rest 1; … het patroon wordt duidelijk: bij oneven exponenten is het 1 en bij oneven exponenten is het 3.
Maar we hebben een toren van drieën, dus de exponent van de exponent is oneven en het eindcijfer is gelijk aan 7.
Iets geavanceerder
Als je hebt leren rekenen modulo getallen (`klokrekenen’) gaat het sneller.
Onze vondst van periode 4 vind je door te zeggen 31=3,
32=9, 33=27=7 modulo 10, 34=3×7=21=1 modulo 10 en zodra we 1 hebben gevonden is duidelijk dat we de periode hebben.
Dan moeten we modulo 4 rekenen om te weten of we 3 of 7 krijgen, maar 3=-1 modulo 4, dus 3k=(-1)k modulo 4 en dan is duidelijk wat we krijgen bij een oneven exponent.
Opgave
Probeer zelf de laatste twee cijfers van het getal van Graham te bepalen. Het duurt iets langer maar met een beetje volhouden kom je er wel.
Recent Comments