Getallen bestaan (eigenlijk) niet

Dit is de derde in een korte serie blogposts naar aanleiding van een discussie op twitter over dit stuk op Neerlandistiek.nl van Marc van Oostendorp dat zelf weer een rectaie op dit artikel van Paul Postal was. De eerdere delen staan hier en hier.

Tussen al die tweets maakte ik de volgende opmerkingen:

Daar wil ik het vandaag even over hebben. Wat zijn getallen eigenlijk? Die vraag werd zelfs op de Nationale Wetenschapsagenda gesteld en ik heb daar al eens een antwoord op gegeven. Ik wil dat hier wat uitgebreider doen.

Getallen

Om te beginnen: in de discussie en de stukken ging het over natuurlijke getallen en die werden vereenzelvigd met hun decimale schrijfwijze. Dat is, in deze tijd, heel natuurlijk: afgezien van jaartallen in Romeinse notatie op gevels van gebouwen (en als paginanummers in boeken vóór de echte inhoud begint) zien we getallen eigenlijk alleen opgeschreven met behulp van de indo-arabische cijfers en de positionele schrijfwijze.
Gegeven deze vereenzelviging is er wel iets te zeggen voor het idee dat boeken en getallen iets gemeen hebben: rijen symbolen met een welgedefinieerde inhoud.

Aan de andere kant: getallen zijn in zekere zin absoluut: ze zijn bestand tegen vertalingen. Twaalf, twelve, douze, tolv, dvanást’, teyan-a-bub, … verwijzen allemaal naar exact dezelfde hoeveelheid streepjes: ||||||||||||.
Als ik een stuk tekst van mezelf in het Engels vertaal is die exactheid weg. Sommige nederlandse woorden en uitdrukkingen doen het niet zo goed in letterlijke vertaling (“laat maar” versus “let but”) en een equivalent-bij-benadering is slechts dat: een benadering. Vergelijk deze twee stukken over de Gulden Snede maar: nederlands versus engels.

Meer, minder, even veel

Maar goed, terug naar de vraag over de aard, of het bestaan, van getallen. Ik denk/vind dat getallen, in de zin van aantallen, niet bestaan.
“Maar we tellen toch dagelijks dingen”, hoor ik u zeggen. Inderdaad, maar de zaken die we daarbij gebruiken zijn bedacht, ze bestaan niet in het wild. Ooit `het getal dat wij in het Nederlands drie noemen’ gezien? En hierbij wel de gebruikelijke notaties loslaten, het symbool 3 telt niet, en III ook niet, en γ’ ook niet.

Maar er is meer: in de verzamelingenleer is het na invoering van de bekende soorten afbeeldingen, injectief, surjectie, en bijectie een koud kunstje te definiëren wanneer de ene verzameling minder, meer, of even veel elementen heeft als een andere. Kleine kinderen weten dat al heel snel, en zonder tellen: haal uit beider zakje snoepjes telkens tegelijkertijd één snoepje. Het zakje dat het eerst leeg is bevatte minder snoepjes dan het andere en gelijk leegraken betekent even veel. Probeer het zelf maar eens: neem twee lepels hagelslag en zoek zo uit welke lepel de meeste korrels heeft.

Maar als je in de verzamelingen een antwoord wilt geven op de vraag “Hoeveel elementen?” sta je in het begin met de mond vol tanden. Na vrij veel werk lukt het een klasse van standaardverzamelingen af te zonderen waarmee andere verzamelingen gemeten kunnen worden en zo een `aantal elementen’ opgeplakt kunnen krijgen. Dat wil zeggen: dit werkt voor eindige verzamelingen, waarbij `eindig’ zo wordt gedefinieerd dat `het’ ook inderdaad werkt.

Hoeveel?

Hoe zit het met willekeurige verzamelingen? Georg Cantor dacht dat er zoiets als `het aantal elementen’ moest zijn; hij had zelfs een definitie:

,Mächtigkeit` oder ,Cardinalzahl` von M nennen wir den Allgemeinbegriff, welcher mit Hülfe unseres activen Denkvermögens dadurch aus der Menge M hervorgeht, dass von der Beschaffenheit ihrer verschiedenen Elemente m und von der Ordnung ihres Gegebenseins abstrahirt wird.

Uit die definitie halen we de volgende eisen waar dat Kardinaalgetal C(M) aan zou moeten voldoen:

  • M en C(M) hebben even veel elementen (als bij de zakjes snoep), in vaktaal: er is een bijectie tussen M en C(M) — C(M) is dus ook een verzameling
  • als er tussen M en N een bijectie bestaan dan C(M)=C(N)

Als er dus zo’n functie is dan kunnen we C(M) `het aantal elementen’ van M noemen.

En, helaas, zo’n functie kun je niet definiëren. Het bewijs van die ondefinieerbaarheid hoop ik maandag 16 december tijdens het laatste college van de Mastermath-cursus Set Theory af te ronden.

Wat betekent dit? Dat verzamelingen geen `intrinsiek’ aantal elementen hebben. Je kunt niet meer doen dan zelf een hoeveelheid standaardverzamelingen af te spreken waarmee je op zinvolle wijze betekenis aan `het aantal elementen’ kunt geven. Getallen zijn geen natuurverschijnselen maar mensenwerk.

Dit gebeurde vaker

De vraag wie van twee mensen langer of korter is is zo beantwoord: hou ze tegen elkaar aan en je ziet het. Om de vraag “Hoe lang zijn die twee mensen?” te beantwoorden zijn in de loop der tijd veel systemen bedacht, sommigen wat logischer dan de andere. Ons metrieke stelsel is overgebleven, ongetwijfeld door de voor de hand liggende definitie van de meter: neem de halve meridiaan van de noordpool door Parijs naar de evenaar en hak die in 10.000.000 even grote stukjes; elk stukje is, per definitie, één meter lang.

Oh, en `teyan-a-bub’? Dat gebruik je bij het tellen van schapen in Weardale.

Be Sociable, Share!

Leave a Reply

Your email address will not be published. Required fields are marked *

© 2011 TU Delft