Het vermoeden van Duffin en Schaeffer
Recentelijk is het Duffin-Schaeffer-vermoeden bewezen. U kunt de preprint hier lezen. In de krant is er ook aandacht aan besteed. Ik wil hier iets meer over de wiskunde achter dit vermoeden vertellen.
Het vermoeden, nu dus een stelling, zegt iets over het benaderen van irrationale getallen met behulp van rationale getallen. De vraag is in het algemeen hoe efficiëent dergelijke benaderingen kunnen zijn.
Nu zullen de meningen over wat efficiënt is uiteen lopen maar de benaderingen die we in de praktijk gebruiken, namelijk afgekapte decimale ontwikkelingen, zijn het niet echt. Als die afgekapte ontwikkelingen als breuk schrijft is die breuk vrijwel nooit te vereenvoudigen: de benadering 3.14159265358979323846264338327 van π levert een onvereenvoudigbare breuk met een grote teller en een grote noemer.
Een goede benadering is er een waar de nauwkeurigheid groot is, vergeleken met de grootte van teller en noemer. Zo kun je 22/7 een goede benadering van π noemen omdat het verschil 22/7-π kleiner is dan 1/49. Het criterium dat we hier hanteren is: p/q is een goede benadering van α als |α-p/q| kleiner is dan 1/q2. Overigens is 19/6 ook een goede benadering: 19/6-π is kleiner dan 1/36.
Een beetje spelen met een rekenmachientje laat zien dat er geen goede benaderingen van π zijn met noemers 8 of 9.
Het vermoeden van Duffin en Schaeffer, nu dus de stelling van Dimitris Koukoulopoulos en James Maynard, gaat overigens niet over individuele irrationale getallen als π of √2. Het bekijkt de zaak van de andere kant en doet uitspraken over hoeveel irrationale getallen veel goede benaderingen hebben.
Je kunt bijvoorbeeld een vaste noemer n nemen en kijken welke getallen een goede benadering met noemer n hebben. Hierbij beperken we ons tot het interval (0,1); getallen in andere intervallen krijgen we door over een geheel getal op te schuiven.
Nu is meteen duidelijk welke getallen een goede benadering met noemer n hebben: die liggen in de intervalletjes van de vorm (k/n-1/n2,k/n+1/n2), met k=1,…,n-1, en in (0,1/n2) en (1-1/n2,1).
De totale lengte van die intervallen is gelijk aan 2/n (reken maar na).
Hiermee kun je voorspellingen doen: omdat 2/10+2/11+2/12+2/13+2/14+2/15 kleiner is dan 1 zijn er getallen zonder goede benadering met noemers 10 tot en met 15.
Noem de vereniging van de intervalletjes hierboven even An. Met behulp van de Categoriestelling van Baire kun je bewijzen dat er een relatief `dikke’ deelverzameling van het interval (0,1) is waarvan elk element tot oneindig veel van de An behoort en dus oneindig veel goede benaderingen heeft.
Dit nu is de aard van de stelling van Dimitris Koukoulopoulos en James Maynard: deze geeft, bij bepaalde definities van `goede benadering’, voorwaarden onder welke de verzameling getallen met oneindig veel goede benaderingen heel `dik’ is of juist heel `dun’, waarbij `dik’ en `dun’ ondubbelzinnige definities hebben. Daarnaast geeft de stelling ook een dichotomie: `dik’ en `dun’ zijn de enige mogelijkheden. Het is nooit zo dat ongeveer de helft van de getallen oneindig veel goede benaderingen hebben; de kans is altijd gelijk aan nul (wat niet betekent dat er geen getallen zonder oneindig veel goede benaderingen zijn) of gelijk aan één.
In het krantenartikel wordt nog het volgende voorbeeld van `mooie’ benaderingen gegeven: als hierboven moet |α-p/q| kleiner zijn dan 1/q2, maar q moet zelf ook een kwadraat zijn. In dat geval is de kans op oneindig veel mooie benaderingen gelijk aan nul, maar de bovengenoemde stelling van Baire garandeert toch dat er heel veel irrationale getallen met oneindig veel goede benaderingen zijn.
Ten slotte: voor de definitie van `goed’ waar dit stuk mee begon geldt dat <emelk irrationaal getal oneindig veel goede benaderingen heeft. Dat bewijs je niet met de methoden die hier beschreven zijn, daar moet je wat dieper de getaltheorie in duiken. Zie hiervoor de Wikipediapagina’s over Benaderingsstelling van Dirichlet en over Kettingbreuken.
Recent Comments