Nul tot de macht nul
In de Facebookgroep Leraar Wiskunde ontspon zich een discussie over de waarde van 00 (nul tot de macht nul). Het begon met een opinieonderzoek met als opties
- 0
- 1
- onbepaald
De macht 00 komt wel eens voor bij het bepalen van limieten: als f(x) en g(x) limiet 0 hebben (als x naar een reëel getal of ∞ gaat) wat is dan de limiet van f(x)g(x)?
Je kunt proberen 00 te definiëren maar dat zal altijd een beetje onbevredigend blijven.
Het uitgangspunt zal natuurlijk de situatie zijn waar xy undubbelzinnig afgesproken kan worden. Dat is voor positieve x. Voor rationale y komt men met interpretatie `herhaald vermenigvuldigen’ een heel eind, zie bijvoorbeeld dit artikel in Pythagoras; daar wordt ook uitgelegd wat te doen als y irrationaal is.
Een andere aanpak is die van Cauchy. In zijn Analyse Algébrique vindt men vanaf bladzijde 106 hoe de continue functies φ te bepalen die voldoet aan de vergelijking φ(x+y) = φ(x)×φ(y). Het resultaat: exponentiële functies: er geldt φ(x)=φ(1)x.
Niets weerhoudt ons ervan te kijken wat er gebeurt als we φ(1)=0 eisen. Dan kunnen we het bewijs volgen zolang de exponent positief is; het resultaat is dat noodzakelijk 0x=0 en continuïteit dwingt ons dan 00=0 te nemen.
Aan de andere kant: Cauchy concludeerde ook dat φ(0)=1 in alle gevallen dat φ(1)>0; dan leidt een limietovergang tot de conclusie 00=1.
Er zijn natuurlijk diverse andere manieren om 00 via een limiet aan te pakken: voor de hand ligt te kijken wat met xx gebeurt als x (van boven) naar 0 nadert. Dat gaat het snelst via de gelijkheid xx=ex×ln(x): de limiet van die exponent is gelijk aan 0, dus de gehele limiet is gelijk aan 1.
Ik zou zeggen dat mogelijkheid 3 toch wel de juiste is.
Dat kunnen we nog beter beargumenteren door wat meer functies in het probleem van de limiet van de macht f(x)g(x) te stoppen.
Neem eens f(x)=exp(-1/x) en g(x)=x; beide functies hebben limiet 0 als x (van boven) naar 0 gaat. Maar f(x)g(x) is constant, met waarde e. Een kleine variatie: neem a>0 en verander g(x) in a×x; dan is de limiet gelijk aan e-a. We kunnen dus elk positief getal als limiet krijgen.
En het volgende paar functies geeft aan dat ∞ ook mogelijk is: neem f(x)=exp(-1/x^2) en g(x)=-x, dan is f(x)g(x) gelijk aan exp(1/x), met limiet ∞ als x (van boven) naar 0 gaat.
Recent Comments