KP Hart

KP's ramblings

Rare vragen IV: vier chemici op zoek naar een optimum (deel 2)

We vervolgen de reis die begon bij deze vraag op www.wisfaq.nl. Inmiddels hebben de studenten aangegeven een docent op te zoeken. Ik had toch nog een paar gedachten over het probleem.

Vierde reactie

Mijn vermoeden was dat de zaak als volgt in elkaar stak: er was een drie-dimensionaal array geïndiceerd met [x1,x2,x3] en bij elk drietal een (meet)waarde y1. Eerst werd bij vaste x2 en x3 door middel van kleinste kwadraten een best passend vierdegraadspolynoom voor y1 in termen van x1 bepaald. De term `kleinste kwadraten’ heb ik er zelf bijgehaald; de studenten hadden het over de `lijnschatter’ van Excel en het klinkt alsof dat een zwarte doos is voor het uitvoeren van lineaire regressie (Google gaf weinig info).

De volgende stap leek dit bij vaste x3 in de in de richting van x2 te herhalen, waarbij coëfficiënten als functie van x2 werden geschreven. En ten slotte werd ook x3 bij het functievoorschrift betrokken.

Ik beschreef dit in mijn reactie en gaf aan dat met kleinste kwadraten ook in één keer een polynoom in drie variabelen voor y1 als functie van x1, x2 en x3 te maken is.

Vijfde reactie

De reactie bevestigde mijn vermoeden maar liet ook zien dat de studenten eigenlijk niet wisten wat ze aan het doen waren: geen reactie op `kleinste kwadraten’.

Voor iemand die weet hoe deze methode werkt is het geen grote stap van één naar meer variabelen. Vermoedelijk is dat niet iets dat makkelijk met de `lijnschatter’ van Excel te doen is.

Zesde reactie

In het (voorlopig) laatste deel van dit verhaal wordt duidelijk dat de studenten toch wel wat wiskunde, in het bijzonder Lineaire Algebra, bij zouden moeten leren.

Conclusie?

Ik werd in het begin op het verkeerde been gezet door de manier waarop de vraag in eerste instantie werd gesteld: het leek of de studenten wisten wat ze deden, uit hun verhaal haalde ik dat ze wisten wat kleinste kwadraten waren maar dat ze niet goed wisten wat met meer dan één variabele aan te vangen. Herhaald toepassen is geen slecht idee maar de beschrijving was zo onduidelijk dat het lang duurde voor ik doorhad dat ze slechts op de zwarte doos die Excel is steunden.

En dan waren we nog niet eens aan de gevraagde optima toegekomen. Zelfs als er uiteindelijk een polynoom voor y1 in termen van x1, x2 en x3 gemaakt is dan nog is het optimum van d[6(1-y1)/x3]/dx1 (en d[6(1-y1)/x3]/dx2 en d[6(1-y1)/x3]/dx3) niet zo snel gevonden, in ieder geval niet in formulevorm zoals de studenten hoopten want het nul stellen van de partiële afgeleiden leidt niet tot prettige vergelijkingen.

Mijn eigen conclusie: niet alle vraagstellers weten/kunnen wat hun vraag lijkt te suggereren.

Rare vragen IV: vier chemici op zoek naar een optimum (deel 1)

Op 1 september 2017 verscheen er een vraag op de wisfaq.nl die aanleiding bleek tot een hele serie reacties met vragen en wedervragen. Ik weet eigenlijk niet wie er meer geleerd heeft: de vraagstellers of ikzelf.

De vraag

Ik raad de lezer aan de vraag eerst zelf te lezen; dan zal duidelijk worden dat deze niet makkelijk is samen te vatten. Het probleem was namelijk, voor mij, dat de vraagstellers geen onderscheid leken te kunnen (of willen?) maken tussen enkel- en meervoud. Dat begon al met de zin “We beschikken over een uitgebreide reeksen.” En verder leek “y1 als functie van x1” eerst op één functie te slaan maar later op meer dan één: x2 ging voor variatie zorgen, en later kwam er ook nog een x3 in het spel. Enfin, mijn reactie laat zien dat men wel iets duidelijker kon zijn.

Eerste reactie

De eerste reactie probeerde een en ander te verduidelijken maar dat lukte niet echt; ik kon geen vinger achter de relaties tussen de, inmiddels zes, variabelen x1, x2, x3, y1, y2 en y3 krijgen. Ik maakte een minimaal datasetje dat, dacht ik, aan de eisen voldeed en vroeg hoe ze y1 als functie van x1 dachten te schrijven.

Tweede reactie

Geen reactie op de dataset maar nog meer uitleg van de werkwijze, zonder dat nu echt duidelijk wordt hoe y1 als functie van x1 te schrijven is. Nogmaals gevraagd hoe dat zou werken met het datasetje.

Derde reactie

Andermaal geen reactie op de dataset, wel de medeling “wij zijn studenten chemie, geen wiskunde”. De bijgeleverde uitleg van de vorm van de vier-dimensionale tabel bracht niet echt meer duidelijkheid. De mededeling aan het eind was van alles het meest zorgwekkend: studenten op een hogeschool zoeken wiskunde-experts op de wisfaq, niet op het eigen instituut. Ik heb ze aangeraden toch eens iemand op de eigen school aan te spreken.

Vierde reactie

Na een zo mogelijk nog cryptischere beschrijving van hun werkwijze komt de mededeling dat ze wel naar een docent zullen stappen.

Morgen meer.

Tijdrijden in Bergen

Deze week worden in Bergen, Noorwegen, de wereldkampioenschappen wielrennen op de weg gehouden, met vandaag, 20-09-2017, het tijdrijden voor de heren. Het parcours is interessant: een relatief vlakke rit met aan het eind een klim naar de top van Fløyen, een plek met een mooi uitzicht over de stad en de haven.

In de lokale krant Bergens Tidende staat het profiel van de rit getekent, met de laatste drie kilometer nog een keer apart in het onderstaande plaatje.

Dat ziet er dramatisch uit, tot je even naar de eenheden kijkt: horizontaal zijn dat kilometers, verticaal gaat het in stappen van 50 meter omhoog. En dat geeft, op zijn zachtst gezegd, een vertekend beeld. Ik heb, bij benadering, het echte profiel even geschetst.

Dat lijkt niet erg steil en zo van opzij ziet het er niet moeilijk uit; echter, bij wegen met een dergelijke helling staat vaak een waarschuwingsbord voor, juist, een steile helling. Een hellingspercentage van ongeveer 10 % betekent dat er constant met een kracht gelijk aan ongeveer 10 % van het gewicht van jezelf en je fiets tegen je aan geduwd wordt. Naar beneden is dat plezierig al zul je snel zien dat je in je remmen moet knijpen om niet te snel te gaan. Naar boven maak die kracht het fietsen al een stuk moeilijker.

Voor wie wil rekenen: denk maar eens aan de formule F=m×a (kracht is massa maal versnelling). De kracht recht naar beneden is gelijk aan g×m (hier is g de zwaartekrachtsversnelling, daar mochten we op school wel de waarde 10 voor nemen). Hiervan werkt 10 % langs de weg, dus onze F is gelijk aan g×m/10, van school mocht ik daar dus m van maken. Conclusie: de versnelling die we ondervinden als we freewheelend naar beneden gaan is 1 m/s2. Per seconde gaan we dus een meter per seconde sneller. Bereken zelf maar eens hoe snel je dat te link vindt worden.

Een meer dan reële kans?

Op twitter keek Marc van Oostendorp terug naar een blogpost van hemzelf over het woord `reëel’: Hoe reëel is meer dan reëel?. In dat stuk wordt gesproken van reële kansen en van kansen die meer dan reëel zijn. En toen sloeg mijn hoofd een beetje op hol: wat voor kansen zijn dat nou weer?

In de wiskunde wordt met het begrip `kans’ heel anders omgegaan dan in het dagelijks leven. In deze column van Ionica Smeets word de wiskundige opvatting van `kans nul’ vergeleken met de dagelijkse. In het kort: het wiskundige `kans nul’ betekent niet hetzelfde als `dat gebeurt niet’ maar als we horen dat de morgen de kans op regen nul is gaan we er van uit dat het morgen niet zal regenen.
Dat verschil brengt de professionele kansrekenaars er toe het woord `kans’ maar los te laten en het bijna-synonieme `waarschijnlijkheid’ gebruiken.

Maar goed, omdat die termen `kans’ en `waarschijnlijkheid’ buiten de wiskunde nagenoeg synoniem zijn kan men zich afvragen wat we aanmoeten met `reële kansen’ en `meer dan reële kansen’.

Wat het eerste betreft: `reële kansen’ is een pleonasme. De kans/waarschijnlijkheid van een gebeurtenis is, per definitie, een reëel getal uit het interval [0,1].

Maar nu het tweede, `meer dan reële kansen’. Wat moeten we daar als wiskundigen mee? Je zou kunnen denken een waarschijnlijkheden met waarden buiten de reële getallen. Is dat mogelijk? Zou je complexwaardige kansen kunnen hebben of zelf quaternion-waardige?
Als je naar de Axioma’s van Kolmogoroff kijkt lijkt het niet: de eerste eis is dat P(A)≥0 voor elke gebeurtenis. Aan de andere twee eisen is met complex- of quaternion-waardige kansen wel te voldoen; er is een goed ontwikkelde theorie van maten met waarden in de complexe getallen of in de quaternionen. Met een beetje goede wil kun je in dit geval een kansmaat definiëren als eentje die alleen waarden in de eenheidsbol aanneemt. De vraag is natuurlijk wat je je dan moet voorstellen bij negatieve of een zuiver imaginaire waarschijnlijkheid maar we kunnen er in ieder geval mee rekenen. En, wie weet, het zou niet de eerste keer zijn dat zulk wiskundig speelgoed een toepassing vindt.

Er is nog een andere manier om kansen `meer dan reëel’ te maken en dat heeft, onder meer te maken met die `kans nul’ van hierboven. Denk, bijvoorbeeld, aan de uniforme kansverdeling op het interval [0,1]. Deze kansverdeling beschrijft wat er gebeurt als je willekeurig pijltjes in dat interval gooit: de kans dat je het interval [⅓,⅔] raakt is gelijk aan ⅓ en in het algemeen: elk interval (a,b) heeft raakkans b-a. Het gevolg van deze afspraak is dat elk punt raakkans nul heeft. Echter, als je een pijltje in het interval gooit dan raak je een punt, ook al had je kans nul dat punt te raken. Dit is waar het in de column van Ionica Smeets om ging: wiskundig betekent `kans nul’ dus niet hetzelfde als `onmogelijk’.

Wat sommige mensen hierbij ook een beetje stoort is dat kansen niet altijd goed opgeteld kunnen worden: elk punt heeft raakkans nul als we al die raakkansen optellen krijgen we weer nul, toch? Maar die som zou gelijk moeten zijn aan de kans dat je het interval [0,1] raakt en die is toch gelijk aan 1. Daarnaast is het ook nog zo dat niet elke deelverzameling van [0,1] een welgedefinieerde raakkans heeft. In de praktijk is dat allemaal niet zo erg: het gaat bij de berekeningen vrijwel nooit om individuele punten maar om verzamelingen, en die verzamelingen hebben hebben vaak beschrijvingen waaraan meteen te zien is dat ze een welbepaalde raakkans moeten hebben.

Wat te doen? Je kunt in het model van Solovay gaan werken; daar heeft elke verzameling een welgedefinieerde raakkans. Echter, de optelwet heb je daar nog niet, en die kun je ook niet krijgen zolang je eist dat je raakkansen reële getallen zijn. En hier komen de meer dan reële kansen in beeld. In dit artikel (ook hier te vinden) ontwikkelden Vieri Benci, Leon Horsten, en Sylvia Wenmackers een waarschijnlijkheidsrekening met waarden in het interval [0,1] van een veel grotere getallenverzameling dan R maar die er wat elementaire algebra betreft niet van te onderscheiden is. Het onderscheid zit hem in de rijkheid van de verzameling en de mogelijkheid een heleboel oneindige sommen zinvol te kunnen behandelen. De raakkans van een enkel punt van het gewone interval [0,1] is positief maar kleiner dan elk `normaal’ positief reëel getal en dat maakt die kans `meer dan reëel’; ook de verzamelingen die geen welbepaalde raakkans hadden krijgen er nu een, maar ook die kansen zijn `meer dan reëel’.

Kwadratuur van de cirkel, II

Vorige keer hebben we bekeken wat `Kwadratuur van de Cirkel’ inhoudt in het kader van Euclidische Meetkunde. We hebben ook gezien dat kwadratuur van de cirkel niet mogelijk is met een passer en een latje. Deze keer gaan we bekijken of er andere manieren zijn om die kwadratuur uit te voeren.

Banach en Tarski

In het begin van de twintigste eeuw rees de behoefte om aan steeds meer deelverzamelingen van de getallenlijn, het vlak, en de ruimte respectievelijk een `lengte’, `oppervlakte’ of `volume’ toe te kennen. Om enige afstand tot de concrete meetkunde te bewaren begon men het woord `maat’ te gebruiken en de eerste die een goede definitie van `maat’ formuleerde was Lebesgue, in 1908.
Later is dit door anderen in zijn volle algemeenheid uitgewerkt maar in de bovengenoemde drie gevallen gebruiken we de Lebesgue-maat nog vrijwel zo als Lebesgue hem gedefinieerd heeft.
Voor bekende meetkundige figuren geeft de Lebesgue-maat de reeds bekende waarde maar voor willekeurige verzamelingen gaat het niet altijd even goed.

Een extreem voorbeeld hiervan werd gegeven door de Polen Banach en Tarski. Voortbouwend op werk van Hausdorff lieten ze zien dat men een massieve bol met straal 1 in eindig veel (vijf is genoeg) deelverzamelingen kan verdelen, en dat men daarna die eindig veel stukken in elkaar kan schuiven tot twee massieve bollen van straal 1. Wie met het artikel van Banch en Tarski in de hand nu een wonderbaarlijke vermenigvuldiging van één sinaasappel tot twee sinaasappels wil uitvoeren komt bedrogen uit.
De bollen zijn ideale wiskundige bollen, geen fysieke sinaasappels. En, en daar was het Banach en Tarski om te doen, de stukken waarin ze de bol verdeelden zijn zo lelijk dat er op geen enkele manier een maat aan toe te kennen is. Immers als dat wel mogelijk was dan zou 1+1=1 bewezen zijn.

Terug naar het vlak

De vraag is nu of de wonderbaarlijke vermenigvuldiging in het vlak ook mogelijk is. Dat bleek niet het geval. Als je een verzameling die een maat heeft in eindig veel deelverzamelingen verdeelt en als je die stukken, hoe lelijk ook, tot een andere verzameling in elkaar legt en die nieuwe verzameling heeft een maat dan zijn de maten van beide verzamelingen gelijk.

U voelt hem wellicht al aankomen: Tarski formuleerde een abstracte versie van `de kwadratuur van de cirkel’: kunnen we een cirkelschijf, zeg van oppervlakte 1, in eindig veel verzamelingen verdelen en die stukken weer in elkaar schuiven tot een vierkant van oppervlakte 1?

In 1990 beantwoordde Miklos Laczkovich deze vraag met “Ja”. De gebruikte stukken zijn vrij lelijk, maar ze hoeven alleen verschoven te worden, draaien hoeft niet. De kwadratuur van de cirkel is dus mogelijk, zij het met instrumenten die veel geavanceerder zijn dan een passer en een liniaal.

Iets over het woord `lelijk’. De ontdekkingen door Banach en Tarski en anderen van verzamelingen waaraan geen maat toe te kennen is leidden tot een vakgebied dat Beschrijvende Verzamelingenleer is gaan heten. Hierin worden verzamelingen geklassificeerd naar hun beschrijvingen; het `lelijk’ dat ik een paar keer gebruikt heb kan daar precies gemaakt worden: de verzamelingen van Banach en Tarski, en van Laczkowicz hebben, noodzakelijk, beschrijvingen die vele malen ingewikkelder zijn dan die van verzamelingen die je normaal tegenkomt als lijnen, krommen en andere herkenbare figuren.

En toch …

Aan het eind van 2016 kreeg dit verhaal nog een nieuw slot. Andrew Marks en Spencer Unger bewezen dat de kwadratuur van de cirkel met stukken gedaan kan worden die in de Beschrijvende Verzamelingenleer als zeer mooi zouden worden aangemerkt, de technische term is “van Borel-complexiteit ten hoogste vier”. Voor U naar de winkel holt om deze `heel mooie’ legpuzzel aan te schaffen: hoewel de stukken in het grote geheel van de deelverzamelingen van het vlak redelijk eenvoudig zijn, zijn ze nou ook weer niet zo makkelijk met de hand te maken en vast te pakken.
Daar komt nog bij dat er wel een heel grote doos nodig is om alle stukken in te bewaren: bij een lezing over dit resultaat werd Andrew Marks naar het aantal benodigde stukken gevraagd; zijn antwoord: in de orde van grootte van 10220. Dat is dus een Googol in het kwadraat, maal nog een keer 1020.

Verder lezen

Veel van wat hierboven is beschreven is uitgebreid na te lezen in The Banach-Tarski Paradox (second edition) van Grzegorz Tomkowicz en Stan Wagon uit 2016. Het resultaat van Marks en Unger is daar nog niet te vinden; `Borel circle-squaring’ is nog één van de grote open problemen in het boek. Wie zin heeft kan het artikel te pakken krijgen via arxiv.org.

Kwadratuur van de cirkel, I

`De kwadratuur van de cirkel’ is voor velen een metafoor voor onmogelijkheid en/of futiliteit; in het Engels is `circle-squarer’ een gangbare term voor iemand die iets onmogelijks voor elkaar probeert te krijgen.
Toch is het recentelijk gelukt: gegeven een cirkelschijf een vierkant maken met dezelfde oppervlakte, en wel door die schijf in een eindig aantal stukken te knippen, die op te schuiven en weer aan elkaar te leggen tot dat vierkant.
In de komende blogposts zal ik het verhaal van het probleem en de oplossing vertellen.

Lang geleden zag ik een cartoon waarop een passer te zien was die ‘s avonds op straat tegen een muur (of lantaarnpaal) geleund stond te dromen. In het droomballonnetje was een vierkant te zien. Ik heb die cartoon uitgeknipt en lang bewaard maar hij moet bij een verhuizing verloren zijn gegaan want ik kan hem niet meer vinden.

Nu kan je die cartoon op diverse niveaus waarderen maar voor mij was het een mooie illustratie bij een beroemd onmogelijkheidsbewijs uit de wiskunde: het is niet mogelijk met behulp van passer en liniaal bij een cirkelschijf met straal 1 een vierkant te maken met precies dezelfde oppervlakte als die schijf.

Euclides en Archimedes

Waarom `passer en liniaal’? Dat komt voort uit De Elementen van Euclides. Daarin wordt de Meetkunde opgebouwd vanuit een beperkt aantal uitgangspunten, waaronder de beroemde vijf postulaten. In de bewijzen worden alleen stappen gezet die in die postulaten beschreven zijn:

  1. Gegeven twee punten trek de lijn door die twee punten.
  2. Gegeven twee punten trek een cirkel door één van de punten en
    met het andere punt als middelpunt.

Euclides formuleerde de eerste stap in twee postulaten: je kunt de twee punten verbinden met een lijnstuk en dat lijnstuk kun je willekeurig verlengen; in redeneringen is het wat makkelijker in één keer die (oneindig lange) lijn getekend te denken. Deze twee stappen kunnen uitgevoerd worden met een liniaal en een passer, vandaar `passer en liniaal’. Overigens heeft die liniaal geen schaalverdeling en daarom spreken sommige boeken, om verwarring te voorkomen, liever van `passer en latje’.

De boeken van De Elementen staan dus vol met constructies die niet meer gebruiken dan de bovengenoemde twee stappen. Onder meer ook constructies van

  1. een paralellogram met dezelfde oppervlakte als een gegeven driehoek
  2. een rechthoek met dezelfde oppervlakte als een gegeven rechtlijnige figuur
  3. een vierkant met dezelfde oppervlakte als een gegeven parallellogram

Het patroon lijkt me duidelijk: bij zoveel mogelijk figuren een vierkant maken met dezelfde oppervlakte. Dat is waar het woord `kwadratuur’ (wat ouder: `quadratuur’) vandaan komt: de oppervlakte van een figuur wordt bepaald geacht als er een vierkant met dezelfde oppervlakte is geconstrueerd.
Wat in De Elementen niet wordt gedaan is de oppervlakte van een cirkelschijf bepalen.

Iemand die wel iets over die oppervlakte kon zeggen was Archimedes. Die bewees dat de oppervlakte van een cirkelschijf met straal r gelijk is aan die van een driehoek met hoogte gelijk aan r en basis gelijk aan de omtrek van de cirkel.
Aangezien de omtrek van de cirkel gelijk is aan 2πr is de oppervlakte van de schijf dus gelijk aan ½×2πr×r en dat is gelijk aan het welbekende πr2. Archimedes had deze notaties nog niet tot zijn beschikking; hij moest het bij de bovengegeven formulering houden. Hij liet ook zien dat, in moderne termen, π tussen de twee rationale getallen 3+10/71 en 3+10/70 ligt.
De bewijzen zijn on-line te vinden via de wikipedia-pagina “Measurement of a Circle”.

Onmogelijkheid

In de negentiende eeuw werd duidelijk waarom die kwadratuur van de cirkel niet in De Elementen gegeven was. Het is namelijk niet mogelijk om dat met alleen passer en latje te doen.

De sleutel tot deze oplossing ligt in het invoeren van coördinaten in het
platte vlak en het kijken wat men algebraïsch kan zeggen over de coördinaten van de punten die construeerbaar zijn vanuit de punten (0,0) en (1,0).
Het blijkt dat we met passer en latje kunnen optellen, aftrekken, vermenigvuldigen, delen en vierkantswortels trekken. En dat is alles.
Op deze manier zijn veel getallen, zoals √2, √(√2), √(2+√(3+√5)), … te construcren, maar lang niet alle getallen. In het bijzonder zijn de getallen π en √π niet met passer en latje te construeren; dat werd door Lindemann in 1882 aangetoond: er is geen enkele manier om uitgaande van het getal 1 en met gebruik van optellen, aftrekken, vermenigvuldigen, delen en vierkantswortels het getal π te maken (en √π dus ook niet).

Volgende keer: als niet met passer en latje kan het op een andere manier wel? Het antwoord is ja, maar de constructie kost heel wat moeite.

Voegwoorden en rekenen

“Taal is geen Wiskunde” schreef @onzetaal als reactie op de vorige post. Inderdaad.

In 2002 stond in het tijdschrift Onze Taal een artikel Alle Aaanwezigen Behalve De Kinderen waarin de werking van voegwoorden gerelateerd werd aan, vooral, optellen en aftrekken.

En, helaas, na een bladzijde voorbeelden gaat het meteen mis:

De betekenis van en is gemakkelijk: het komt overeen met de optelling van twee aantallen. In de wiskundige verzamelingenleer worden aantallen als verzamelingen voorgesteld. De betekenis van `Jan is bakker en visser’ wordt in verzamelingstheoretische termen opgevat als `Jan behoort zowel tot de verzameling bakkers als tot de verzameling vissers.’

De betekenis van en is een stuk ingewikkelder dan optellen en dat laat het geciteerde voorbeeld meteen zien: door te zeggen `Jan is bakker en visser’ verwijst men inderdaad naar de doorsnede van twee verzamelingen: Jan∊Bakkers∩Vissers. Echter `Willen alle bakkers en vissers naar voren komen’ verwijst naar een vereniging: Bakkers∪Vissers. En beide mogelijkheden komen niet overeen met optellen: in het eerste geval laten we niet-vissers weg uit de verzameling bakkers en in het tweede geval is het totale aantal mensen niet noodzakelijk de som van de aantallen bakkers en vissers want onze Jan wordt dan dubbel geteld.

Later wordt aan of ook een rekenkundige kant toegedicht. Die lijkt ook verdacht veel op optellen `Jan is bakker of visser’ verwijst (weer) naar de vereniging van de verzamelingen bakkers en vissers. “Jan behoort tot de verzameling die het resultaat is van de samenvoeging van de bakkers en de vissers. Daar moet je nog de doorsnede van aftrekken, omdat Jan niet tegelijk bakker en visser zou kunnen zijn”. Dat is nou jammer, want de tweede helft van de zin is nogal ongelukkig.
Als het er om gaat de bakkers en vissers bijeen te nemen dan is weglaten van de doorsnede niet nodig: iemand mag best bakker en visser tegelijk zijn. Als het om het totale aantal mensen gaat moet je, als boven, het anatal mensen in de doorsnede aftrekken van de som van de twee aantallen om dubbeltellen te voorkomen.
De tweede helft is ongelukkig omdat hij niets uitlegt: door het `zou kunnen zijn’ laat hij in het midden of Jan twee beroepen uitoefent, of niet en maakt hij het `omdat’ niet waar.

Ik proefde daar een beetje het verschil tussen het exclusieve of en het inclusieve of maar het kwam niet geheel uit de verf. In de omgangstaal of of veelal exclusief: een koekje of een snoepje, maar niet allebei. In de wiskunde gebruiken we het inclusieve of, een beetje uit gemakzucht maar vooral omdat het in de Logica allemaal een stuk mooier werkt.

Met de tweedeling aan het eind kan ik het wel eens zijn: er zijn twee soorten voegwoorden, die in de ene groep gedragen zich als binaire operaties (denk aan +, ∪ ∩, …) en die in de andere als binaire relaties (≤, =, ≥, ⊆, …). En daar was het in het artikel om te doen: proberen een vinger te krijgen achter het verschijnsel dat je sommige voegwoorden `binnen/buiten de haakjes kunt halen’. De zinnen `Jan is bakker en Jan is visser’ en `Jan is bakker en visser’ betekenen hetzelfde en zijn syntactisch correct. Maar van `Ik ga naar buiten omdat ik wil hardlopen’ kun je niet `Ik ga naar buiten omdat wil hardlopen’ maken; `omdat’ is hier een binaire relatie en die kun je ook in de wiskunde niet buiten de haakjes halen: 5+a=5+b is niet hetzelfde als 5=a+b.

Ten slotte

Om het werken met voegwoorden met rekenen te vergelijken ligt voor de hand maar is niet de juiste keuze. Beter is het naar de Boolese Algebra te kijken (spreek uit: Boelse Algebra). Deze is voortgekomen uit het werk An Investigation into the Laws of Thought van de Ierse wiskundige George Boole. Daarin wordt gerekend met ∧ (en) en ∨ (of), volgens regels die een beetje op die van het gewone rekenen lijken maar ook niet meer dan een beetje.

Veel van wat in het artikel wordt besproken kan hiermee geanalyseerd worden. De ervaring leert dat de studenten met dat rekenen niet zoveel moeite hebben. Het kost ze (en niet alleen de studenten) veel meer moeite normale zinnen correct naar dit formalisme te vertalen.

Twee keer zo langzaam; de helft langzamer

“Twee keer zo langzaam” betekent hetzelfde als “de helft langzamer”.

Via een tweet van Enith Vlooswijk vond ik deze deze gedachtenwisseling:
Vraag: ‘2 keer zo langzaam’ hoor je vaak, maar is het correct en/of betekent het iets?
Antwoord: Ja, het is correct. Je zou ook kunnen zeggen: ‘de helft langzamer’; dat betekent hetzelfde.

Dit klinkt als iets waar ik het in een eerdere blogpost ook al eens over heb gehad: het door elkaar halen van `twee keer zo X’ en `de helft X-er’. Dat is vaak een gevolg van het door elkaar halen van Begin- en Eindsituatie. In symbolen: `twee keer zo X’ kun je schrijven als E=2B en `de helft X-er’ kun je schrijven als E=B+E/2. In het eerste geval verdubbel je B, en in het tweede geval tel je de helft van E op bij B om E te krijgen. Voor de gewenste ondubbelzinnigheid: werk altijd vanuit de beginsituatie; de juiste betekenis van `de helft X-er’ is daarmee dus E=B+B/2.

In dit geval is er echter nog iets aan de hand. We kijken eerst even in het woordenboek voor de betekenis van langzaam:

  • niet vlug; traag, sloom
  • met geringe snelheid
  • in de vergrotende trap ter aanduiding van een geringere snelheid in relatieve zin
  • zonder snelle overgang of ontwikkeling; geleidelijk

In alle gevallen staat er iets dat eigenlijk niet te kwantificeren is: hoe meet je of iets twee keer zo ‘niet vlug’ is als iets anders? En wat te denken van een twee keer zo geringe snelheid of iets waarvan de snelheid de helft geringer is?

En verder: wanneer is iets langzaam genoeg om deze constructies te kunnen gebruiken? Ik neem aan dat “twee keer zo langzaam als de lichtsnelheid” niet alleen mij de wenkbrauwen doet fronsen?

Misschien wordt daarom het antwoord op de vraag of `2 keer zo langzaam’ iets betekent niet expliciet maar impliciet gegeven: “hetzelfde als `de helft langzamer'”. En ik ben dan geneigd te zeggen: inderdaad, de twee constructies betekenen hetzelfde, namelijk niets.

Nu kan ik wel raden wat de gedachte betekenis van `2 keer zo langzaam’ is: met de halve snelheid. En dan kun je `de helft langzamer’ ook wel duiden: ga langzamer en wel met de helft van de huidige snelheid.

Maar waarom zou je dat dan niet gewoon zeggen?

Toch wat wiskunde

Als we `twee keer zo langzaam’ als `half zo snel’ interpreteren dan komen we uit op de volgende `Behoudswet’: het product van snelheid en langzaamheid is constant. Maar dan betekent `de helft langzamer’ toch echt `twee keer zo snel’.

De ene wortel is de andere niet

Of toch wel …

Er was weer een interessante vraag op de wisfaq. OK, wiskundig gezien niet erg interessant maar wel als inkijk in het hoofd van een/de(?) student.

Een vraag over de cosinus van de helft van arcsin(⅓) leidde tot het volgende: de student had

als antwoord gevonden en het `officiéle’ antwoord was

In de woorden van de student: “En dat is waar ik vastloop.”.

Eigenlijk was de student niet vastgelopen; de oplossing was correct, alleen niet letterlijk gelijk aan het modelantwoord. Voor iemand die met vierkantswortels om kan gaan zou het een koud kunstje moeten zijn het ene antwoord in het andere om te zetten en ik vraag me af waarom dat tot `vastlopen’ zou moeten leiden.

De oefening ging duidelijk om werken met inverse goniofuncties en daar kan de student mee overweg. Hij is kennelijk de routine van de vierkantswortels al weer kwijt. En uit de vervolgvraag blijkt dat hij niet erg stevig in de schoenen staat.

De vraag is wat de vraag is geweest: als er niets meer gevraagd werd dan de cosinus van de helft van arcsin(⅓) dan is het antwoord van de student prima; het modelantwoord is alleen wat mooier gemaakt. Al kun je daar over twisten: aan het antwoord van de student is wat makkelijker te zien hoe groot die cosinus ongeveer is. Als in de vraag stond dat in de wortel alleen gehele getallen mogen staan dan is het modelantwoord het gewenste antwoord maar dan gaat de vraag over meer dan alleen goniofuncties.

Dit alles neemt niet weg dat je van een student zou mogen verwachten dat deze in staat zou moeten zijn de twee wortelvormen aan elkaar gelijk te praten.

KP checkt: 0,004 voetbalvelden

Je moet het eigenlijk niet doen, een grap narekenen. Maar toch, De Speld berichtte over een fenomenale prestatie van Harm, die 20 m2 kliklaminaat had gelegd, ruim 0,004 voetbalvelden. Ik heb dat getal toch even geverifieerd.

Na enig zoeken vond ik op de website van de KNVB een document met op pagina 10 een plaatje van een standaard voetbalveld. De lengte van een veld mag variëren van 100 tot 105 m en de breedte van 64 tot 69 m.

Dan zijn we er snel uit: de oppervlakte van een officieel voetbalveld is minimaal 6400 m2 en maximaal 7245 m2. Even cijferen (of een rekenmachientje) leert ons het aantal voetbalvelden dat Harm aan kliklaminaat gelegd heeft tussen de 0,00276 en 0,003125 ligt, Nederlandse voetbalvelden dan.

Internationaal zit er nogal wat speling in de afmetingen van voetbalvelden zit. Volgens de IFAB website mag de lengte van een veld liggen tussen 90 en 120 m en de breedte tussen 45 en 90 m. Voor internationale wedstrijden is het wat strakker geregeld: lengte van 100 tot 110 m, en breedte van 64 tot 75 m. Bij geschikte keuze van lengte en breedte kan Harm dus inderdaad claimen dat hij ruim 0,004 voetbalvelden aan laminaat heeft gelegd.

Ik ben het overigens wel met deze Wikipedia-pagina eens:

Het voetbalveld wordt ook wel als oppervlaktemaat gebruikt, bedoeld voor mensen die hectare (ha) of vierkante kilometer (km2) te abstract vinden. Het kleinste FIFA-veld past tweemaal in het grootste, dus is een “voetbalveld” geen betrouwbare maat.

Opgave
Harm moest het laminaat ook drie trappen op sjouwen; controleer zijn bewering dat als hij dat nog 30,7 miljoen keer had gedaan hij de afstand tot de maan had afgelegd.

© 2011 TU Delft