KP Hart

KP's ramblings

Los op. Of toch niet?

Een aardige vraag op de wisfaq die laat zien dat een opgave goed lezen ook belangrijk is.

De vraagsteller had moeite met deze vraag: “Toon aan dat er een reëel getal t bestaat zodat voor de functie g(x)=(x-a)2(x-b)2+x geldt dat g(t)=(a+b)/2.” Het oplossen van de vergelijking (t-a)2(t-b)2+t=(a+b)/2 lukte niet helemaal.
Maar hoogstwaarschijnlijk was het helemaal niet de bedoeling die vergelijking op te lossen: de opgave was namelijk “toon aan dat zo’n t bestaat”, niet “bepaal zo’n t”. Dat de vraagsteller een student van een universiteit is suggereert dat het hiet om een toepassing van de Tussenwaardestelling gaat. Die stelling spreekt voor velen bijna voor zichzelf maar een van de eersten, zo niet de eerste, die doorhad dat er iets te bewijzen was was Bernard Bolzano. In een artikel met de welluidende titel Rein analytischer Beweis des Lehrsatzes daß zwischen je zwey Werthen, die ein entgegengesetzetes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege legde hij uit dat de volgende stelling wel degelijk een bewijs nodig had:

Laat f en φ twee continue functies zijn en a en b twee reële getallen zo dat f(a)<φ(a) en f(b)>φ(b); dan ligt er een getal c tussen a en b met f(c)=φ(c)

In een tijd dat `continu’ meetkundig werd geïnterpreteerd als `de grafiek is een ononderbroken kromme’ leek het duidelijk dat de grafieken van f en φ elkaar tussen a en b zouden moeten snijden. Bolzano waste zijn tijdgenoten grondig de oren over deze misvatting; hij wilde een echt analytisch bewijs en geen `kijk maar, er is een snijpunt’. Bolzano had namelijk ook al door dat niet elke continue functie een makkelijk te tekenen grafiek had: hij heeft ook een van de eerste continue nergens differentieerbare functies geconstrueerd. In het artikel van Bolzano vinden we een analytische definitie van continuïteit en een bewijs van de tussenwaardestelling dat zo in de huidige boeken opgenomen kan worden (en eigenlijk opgenomen is).

Met deze stelling in de hand is de opgave zo opgelost: voor de functie van de vraag geldt g(a)=a en g(b)=b; het getal gemiddelde (a+b)/2 van a en b ligt tussen a en b, dus toepassing van Bolzano’s stelling met g en de constante functie ψ met waarde (a+b)/2 levert het bestaan van een t tussen a en b met g(t)=(a+b)/2.

Overigens kan de vergelijking wel opgelost worden: er is een oplosformule voor de vierdegraadsvergelijking maar die staat vrijwel nergens op het programma van een analysecursus.

More on machine learning and CH

A few days ago I wrote about a paper establishing an independence result in the field of machine learning. Here I offer a few more comments.

In the paper the authors comment on the relation between their result and actual machine learning. That relation may seem tenuous because none of the functions involved in the arguments is related to any kind of algorithm.
Indeed the constructions of the compression schemes are very non-constructive in that they use repeated applications of the Axiom of Choice.

Now the inequality 20>ℵω implies there are no compression schemes whatsoever. But it may be of interest to know that consistent examples of compression schemes must be nonconstructive. It turns out that, with the aid of a few standard results from Descriptive Set Theory it is relatively easy to show outright that there are no Borel measurable monotone compression schemes and hence no Borel measurable learning functions for the class of problems studied in the paper mentioned above either.

The details can be found in this note.

Machine Learning and the Continuum Hypothesis

Not even Machine Learning is safe from Set Theory, or so it seems. On the website of the journal Nature there is an article about a paper in Nature Machine Intelligence that connects a certain kind of learnability to the Continuum Hypothesis. The conclusion of the paper is that certain abstract learnability questions are undecidable on the basis of the normal ZFC axioms of Set Theory.

The article tries to explain what is going on but seems to confuse two disparate things: Gödel’s (First) Incompleteness Theorem on the one hand and the undecidability of the Continuum Hypothesis on the other hand.
The first is a very general statement about first-order theories; it states that for every theory that satisfies a number of technical conditions there are statements that have no formal proof and neither do their negations. Elementary number theory is subject to this theorem, as is ZFC Set Theory.
The second is a Set-theoretical statement for which we can prove that is no formal proof, nor for its negation. It is also more interesting than Gödel’s statements; the latter `simply’ assert their own unprovability, whereas the Continuum Hypothesis is a fundamental statement/question about the set of real numbers..

The confusion manifests itself when the Continuum Hypothesis is called a paradox. It is not. The statements from the Incompleteness Theorem on the other hand are usually likened to the Liar Paradox in that “This formula if unprovable” looks a lot like the paradox that is “This sentence is false”.

The paper itself also alludes to the Incompleteness Theorem; it even states that is used in the argument. It is not. No use is made of Gödel’s abstract unprovable sentences.

The Set Theory

So, what is the Set Theory in the paper? The learnability question is shown to be equivalent to the existence of a natural number m and a map η from the family of m-element subsets of [0,1] to the family F of finite subsets of [0,1] that satisfies the following condition: if A is a subset of [0,1] with m+1 elements then it has a subset B with m elements such that η(B) contains A.

The main theorem of the paper states that an arbitrary set X admits such a map with m=k+1 if and only if X has cardinality at most ℵk.

If the Continuum Hypothesis holds then [0,1] has cardinality ℵ1, hence there is a map as required with m=2. More generally there is a map as required if the cardinality of [0,1] is equal to ℵk for some natural number k. These possibilities do not lead to contradictions, hence neither does the learnability statement. On the other hand, the statement that the cardinality of [0,1] is larger than all these ℵk does not lead to contradictions either, hence neither does the negation of the learnability statement.

The derivation of the main statement parallells that of the main result of the paper Sur une caractérisation des alephs by Kuratowski from 1951: a set X has cardinality at most ℵk if and only if its power Xk+2 can be written as the union of k+2 sets A1, …, Ak+2 such that for every i and every point (x1,…,xk+2) in the power the set of points y in Ai that satisfy yj=xj for j≠i is finite; in Kuratowski’s words “Ai is finite in the direction of the ith axis”.
Indeed one can even construct of a map η for m=k+1 from this decomposition of the canonical set ωk of cardinality ℵk.
For notational simplicity we take k=2, so m=3, and ω24 has a decomposition into four sets A1, A2, A3, and A4. Given a subset F of ω2 of 3 elements enumerate it in increasing order: x1<x2<x3. The set η(F) will consist of F itself together with

  • all x for which (x,x1,x2,x3) belongs to A1,
  • all x for which (x1,x,x2,x3) belongs to A2,
  • all x for which (x1,x2,x,x3) belongs to A3,
  • all x for which (x1,x2,x3,x) belongs to A4

To see that this works let G be a four-element subset of ω2, enumerate it as y1<y2<y3<y4. Then (y1,y2,y3,y4) belongs to one of the four sets, say it belongs to A2; then G is a subset of η({y1,y3,y4}): the point y2 is included in the second line in the list above.

Note. The proof of the main theorem (Theorem 1) of the paper is not quite correct: it fails for k=1 for example as one encounters the cardinal number ℵ-1. Worse: in that case the ordering <1 seems to have order type ω1 and ω0 simultaneously. All this can be repaired with a better write-up.

Het Probleem uit Katowice

De klimaatttop in Katowice verliep/verloopt moeizaam. Maar het klimaat is niet het enige probleem dat aan Katowice verbonden is.

Het probleem uit Katowice gaat over iets totaal anders. Eén manier om het in te leiden is als volgt. Een eenvoudige opgave: stel dat twee verzamelingen evenveel punten hebben, bewijs dat ze evenveel deelverzamelingen hebben.
Dat klinkt voor de hand liggend en het bewijs is, zeker voor een eerstejaarsstudent, niet moeilijk. De juiste wiskundige formulering van `X en Y hebben evenveel elementen’ is er bestaat een bijectie (ook wel een-een-correspondentie genoemd) f:X→Y tusen de twee verzamelingen. Uit die bijectie maak je met gemak een bijectie F tussen de families deelverzamelingen: F(A)=f[A].
Het omgekeerde probleem zou zijn: stel dat twee verzamelingen evenveel deelverzamelingen hebben, bewijs dat ze evenveel punten hebben.
Dat is een stuk lastiger op te lossen; het lukt nog wel voor eindige verzamelingen want een verzameling met n punten heeft 2n deelverzamelingen en als 2m=2n dan volgt m=n. Echter, dat gebruikt extra informatie, meer dan alleen het bestaan van de bijectie F tussen de families deelverzamelingen. En, geloof het of niet: met alleen de informatie dat zo’n F bestaat is de opgave niet te maken. Dat volgt uit het werk dat Paul Cohen heeft gedaan bij zijn deel van de oplossing van Cantor’s Continuumhypothese: daarbij creërde hij een situatie met twee oneindige verzamelingen met evenveel deelverzamelingen maar niet met evenveel punten.

De som wordt maakbaar als we aannemen dat de bijectie wat meer structuur heeft; als je bijvoorbeeld eist dat F en zijn inverse de deelverzamelingrelatie bewaren, dat wil zeggen A⊂B dan en slechts dan als F(A)⊂F(B), dan kun je wel een bijectie tussen de verzamelingen X en Y maken: F moet namelijk de éeacute;npuntsverzamelingen op elkaar afbeelden en dat geeft automatisch de gewenste bijectie.

In de wiskunde is het soms zo dat we `kleine’ verzamelingen verwaarlozen; zo kunnen we afspreken dat we verzamelingen die maar een eindig aantal punten verschillen als gelijk beschouwen. Dat nu leidt ons tot Het Probleem van Katowice: als je weet dat er afbeelding is die bijectief is en ⊂ respecteert, waarbij eindige verschillen er niet toe doen, kun je dan een bijectie tussen de gegeven verzamelingen maken?
Dat probleem is een stuk moeilijker dan de andere maar het is opgelost, bijna: het antwoord is bijna altijd ja, er zijn twee oneindige verzamelingen, met verschillende aantallen elementen, waarvoor we nog niet hebben kunnen bewijzen dat zo’n bijna-bijectie niet bestaat.

Voor wie meer wil weten: hier is een overzicht van het probleem. Met een waarschuwing: zonder een behoorlijke dosis wiskundige basiskennis is het artikel lastig te lezen.

En waarom is dit Het probleem uit Katowice? Het werd opgeworpen door een student aan de Silezische Universiteit in Katowice en omdat het overgebleven geval zo weerbarstig is gebleken heeft het probleem onder wiskundigen deze naam gekregen.

Een vierkante seconde

Een tip voor een niet-standaard uitstapje in Delft: ga een vierkante seconde bekijken.

Delft heeft een mooie binnenstad maar in de buitenwijken kun je ook aardige dingen zien. Neem tram 1 richting Tanthof, stap uit bij de halte Van der Slootsingel, loop de straat met die naam helemaal uit en ga dan rechtsaf het park Buitenhof in. Op een zacht glooiende helling ligt het, een kunstwerk met de naam Een Vierkante Seconde. Je moet echt de helling op want anders zie je de stenen die het vierkant vormen niet.

Waarom `vierkante seconde’?

Als je nauwkeurig wil aangeven waar je bent dan geef je je coördinaten door met behulp van het systeem dat daar al een paar eeuwen voor gebruikt wordt: lengte- en breedtegraden. Op de aarde zijn (denkbeeldig) twee stelsels lijnen getrokken: van de noord- naar de zuidpool (meridianen), en loodrecht daarop, evenwijdig aan de evenaar dus (parallellen).
De meridiaan die door the Royal Observatory in Greenwich loopt heet de nulmeridiaan; samen met de evenaar vormt hij een soort assenkruis, met de evenaar als x-as en de nulmeridiaan als y-as.

Het snijpunt van de nulmeridiaan en de evenaar is de oorsprong. In plaats van x- en y-coördinaten spreken we van, respectievelijk, lengte en breedte en in plaats van positief of negatief zeggen we ooster- en westerlengte, en noorder- en zuiderbreedte.
De eenheid die gekozen is om lengte en breedte uit te drukken is de graad; dat is natuurlijk omdat alle lijnen (delen van) cirkels zijn. Dat is ook handig omdat de parallellen niet allemaal evan lang zijn: de `parallel’, bijvoorbeeld, aan de noordpool bestaat uit maar één punt.

Beide assen zijn in graden verdeeld. De evenaar in twee keer 180 graden: west en oost, als je de nulmeridiaan doortrekt krijgt je de meridiaan op 180° west en oost. De nulmeridiaan is in twee keer 90° verdeeld, noord en zuid.
Nu is nulmeridiaan van de evenaar tot de noordpool 10.000 km lang (per definitie) en dus is één graad ongeveer 111 km lang. Dat is nog vrij veel en daarom zijn de graden weer in 60 mminuten verdeeld, die 60 is een overblijfsel van de 60-tallige schrijfwijze voor getallen uit het oude Babylon. Een minuut langs de nulmeridiaan is ongeveer 1850 m lang; en dat is nu net de definitie van een zeemijl.
De minuten zijn zelf weer in 60 seconden verdeeld en een seconde langs de nulmeridiaan is dus zo’n 30 m lang.

Langs de parallellen worden de graden, minuten en seconden steeds korter. Als je in Park Buitenhof aankomt en het kunstwerk bekijkt zul je zien dat het er niet als een vierkant van 30 bij 30 meter uitziet. Je kunt aan het kunstwerk Geografische Plaatsbepaling Delft (dat is de officiële naam) zien hoeveel korter een seconde op onze breedte geworden is. Het kunstwerk is namelijk een vierhoek die door twee parallellen en door twee meridianen begrensd is.
Op de foto’s van de vier hoeken kun je zien welke lijnen dat zijn:

  • de meridianen op
    • 04° 20′ 06” O. L. en
    • 04° 20′ 07” O. L.,
  • en de parallelen op
    • 51° 59′ 29” N. B. en
    • 51° 59′ 30” N. B.

Ik ben de hele vierhoek rondgelopen; in de noord-zuidrichting had ik dertig stappen nodig en in de oost-westrichting maar negentien.

Voor de wiskundigen: Welke functie bepaalt de lengte van een seconde langs een parallel? Kloppen mijn gemeten lengten ongeveer?

Andere zaken

In het blad Pythagoras is ook al eens een stukje over de vierkante seconde verschenen. Naar aanleiding hiervan ontdekte ik dat je op moet passen als je met een GPS-apparaat in de hand op zoek gaat naar het kunstwerk. Toen de vierhoek werd gelegd (1970) gebruikte men in Nederland het systeem ED50, sindsdien is het systeem WSG 84 in gebruik genomen. Het verschil tussen die systemen is ongeveer 100 meter; met een apparaat dat op WSG 84 is ingesteld loop je het risico in een van de sloten rond het park terecht te komen. In dit document kun je meer lezen over het omrekenen tussen de twee systemen.

In een video van Ionica Smeets over de vierkante seconde wordt hier voor gewaarschuwd. Naar aanleiding van die video is er een Geocache bij het kunstwerk gemaakt.

Op de Kunstwachtwebsite kun je ook over Geografische Plaatsbepaling lezen. En op de website van een van de makers, Nelis Oosterwijk, kun je wat ontwerpschetsen zien.

En tau rund jorden, II

Dette er andre delen av en oversettelse av en artikkel som ble publisert i November 2004 i Pythagoras (et matematisk tidsskrift for unger). Artikkelen finnes også på Engelsk i Half a Century of Pythagoras, en utvalg av artikler publisert av MAA.

Vi strekker en tau helt tettsittende rund jorden, forlenger det lit og drar de opp til den en helt stram. Hvor høyt må vi dra opp tauen? Kan vi uttrykke høyden i lengden vi spleiset inn?

I går vi så at når vi tar en tau som er en meter langre enn jordens omtrekk og drar tauen strammt ved Nordpolen så skal det høyeste punktet være på 121 meter og lit mer. I dag skal vi lage en enkel formel med radiusen og ekstra lengden i som gir en god approksimasjon av høyden.

En effektiv approksimasjon

Her er tegningen fra i går igjen

Fra Pythagoras sin læresetning lærte vi at



Fra bildet ser vi også at



Dette kan kombineres til denne ligningen



Nå har vi et uttrykk for h som bruker R og α men vi trenger et som bruker ε. Dette må gjøres implisitt fordi α er en løsning av



og der er ingen `pen’ (eller stygg) formel for løsningene.

Som vi så i går er vinkelen α veldi liten (0.006176 radianer). Nå er det slik at α+α3/3 er en veldi bra approksimasjon av tanα. Hvis vi setter dette uttrykket i ligningen så får vi



Også tanα er veldi liten.
Og for x nær 0 har vi √(1+x)≈1+½x; nå kan vi forenkle formelen for h til en approksimasjon



Neste steg er å skrive ut kvadraten



Når vi setter i tallene så får vi Rα2=242.8 m, Rα4=0.009 m og Rα6=3.5×10-7 m. Vi derfor kan trygt kaste fjerde og sjette potensene og så får vi denne approksimasjonen for h:



Lit lengre siden fant vi at



Vi setter det inn i approksimasjonen og får



Nå bruker vi verdien av R og får til slutt



Det flotte med denne formelen er at den gir nesten samme svaret som i går: setter vi inn ε=0.5 så får vi h≈121.4 m igjen.

Oppgav
Sett inn ε=0.005 in formelen vår. Hvor mye forskjeller resultatet fra verdien av h som vi fikk i går?

Exercise
Undersøk hvor bra approksimasjonen √(1+x)≈1+½x er. For eksempel, sammenlign (1+½x)2 med 1+x; for hvilken x er forskjellen liten nok til å bli kastet? Er du enig i hvordan approksimasjonen brukes her?

Bemerkning
Vi kan isolere ε i formelen:



dette gir viktig kvalitativ informasjon: h er omtrent lik en konstant ganger ε2/3.
Hvis du er kjent med Taylorpolynomer kann det være gøy å finne ut hvor stor feilen er (hvilken potens av ε) i denne approksimasjonen.

En tau rund jorden, I

Dette er første delen av en oversettelse av en art ikkel som ble publisert i November 2004 i Pythagoras (et matematisk tidsskrift for unger).
Artikkelen finnes også på Engelsk i Half a Century of Pythagoras, en utvalg av artikler publisert av MAA.

Vi strekker en tau helt tettsittende rund jorden, forlenger det lit og drar de opp til den en helt stram. Hvor høyt må vi dra opp tauen?

Fast alle har hørt om følgende oppgaven. Vi tar en tau og strekker den rund jorden, langs polene, slik at den sitter tett. På Nordpolen spleiser vi inn en ekstra meter tau. Så drar vi, og mange folk rund jorden, tauen opp slik at den er overalt like høyt over jordoverflaten; den blir en sirkel igjen. Hvor høyt kommer den til å bli? Kan en mus komme seg under tauen?

Svaret, tauen skal være overalt 16 centimeter høyt, blir en overraskelse for mange folk. inntil du utfører beregningen. Vi begynner med en tau som er 2πR lang, der R er jordens radius. Oppgaven er å bestemme radiusen til sirkelen som er en meter lengre. Det vil si: bestem R’ slik at 2πR’=2πR+1. Men det er lett å gjøre: divider med 2π, så får vi R’=R+1/(2π)≈R+0.159.

Beregninger viser at verdien av R er ikke viktig: hvis du forlenger en sirkel med en meter så forlenger du radiusen med nesten 16 centimeter.

Vi henger jorden på en spiker

Men hva om vi drar opp tauen bare på Nordpolen til den er helt stramm igjen? Som om vi skule bruke tauen til å henge jorden på en spiker. Hvor høyt kommer spikeren til å bli over Nordpolen? Kan en isbjørn komme seg under tauen?

Her er en tegning som viser hva vi prøver å gjøre.

Det er lit enklere med bokstaver: R er jordens radius, ε er halvparten av tauen vi spleiset inn (en halv meter altså) og h er svaret på spørsmålet.
Buen d viser distansen fra Nordpolen til begge punktene der tauen sist berører jorden.
Vi har en rett vinkel i A (og B) fordi linjen fra A til spikeren er en
tangent til sirkelen. Nå kan vi finne en formel for h.

Vi begynner med Pythagoras sin læresetning:



og så h+R=&pm;√(R2+(d+ε)2), eller



Dersom h er positiv må vi ta plussen, og



Vi tar R utenfor parentesen og får



Det vi ikke vet her er verdien til d. Vi bruker radianer, og derfor d=αR eller α=d/R fordi, som vi skal se, det er enklere å lage en ligning for α.

Fra bildet ser vi hva tangensen til vinkelen α er:



og derfor



eller



Så, vår α er en løsning på siste ligningen.

Nå trenger vi noen tall. Jordens omkrets er, per definisjon, 40.000 km
(se illustrasjonen her). Derfor R=40.000.000/(2π) m og, selffølgelig, ε=½ m. Det betyr at vi må løse



Det finnes ingen enkelt formel for løsningen; det beste vi gjøre er å løse ligningen numerisk. De fleste grafiske kalkulatorene kan gjøre det for deg og jeg fikk denne løsningen: alpha;≈0.006176=6.176×10-3 og det betyr at d≈247.040 km. Det er interessant å vite hvor langt fra Nordpolen tauen forlater jorden men vi trenger ikke d i beregningene våre: vi setter α for d/R in formelen for h:



Når vi taster alle tallene in kalkulatoren får vi h≈121.4 m.

Oppgave
Gjør alt igjen men nå spleiser du inn bare en centimeter tau. Hvis tauen er lett nok kan du dra den stramm uten hjelp?

Selv om vi ikke har en eksakt formel for h som involverer ε og R kan vi noe om relasjonen mellom de tre størrelsene. Jeg skal skrive noe om det senere, in andere delen av denne historien.

Hon hade blivit kissnödig

Sometimes I read a book for an odd reason. In this blog a reader expressed surprise that `pee’ was being used as a noun to indicate the act of peeing, as in “She needed a pee”. This piqued my interest not because of the issue of noun versus verb but because I wanted to know what was in the Swedish original, `Solstorm’ by Åsa Larsson.

The original sentence was “Hon hade blivit kissnödig”. I found it difficult to come up with a faithful translation that is as compact as the original. Both “She needed to pee” and “She needed a pee” come close but they do not convey the exact meaning. A too-literal translation runs as follows: “She had become piss-necessary”; the `necessary’ chafes here. The term `piss-pressed’ might be better, but I could not come up with one word that describes the state of having the need to micturate.

The Swedish `att kissa’ means `to piss’ and it is an obvious candidate for a false friend between that language and English. It turns out that Google Translate has problems with the sentence too. When I had it translate “Hon hade blivit kissnödig” I got

  • English: She had become kissed
  • Dutch: Ze was gekust
  • Norwegian: Hun ble blitt kysset

Be careful what you ask for in Sweden.

Servetringen en Cavalieri

In haar laatste column voor de vakantie gaf Ionica Smeets de lezers een puzzel van Martin Gardner mee. Dit stukje gaat over een aspect van de puzzel dat in de column een beetje onbelicht blijft maar dat wel de sleutel tot een oplossing `uit-het-hoofd’ is.

Het probleem gaat als volgt: neem een bol en boor daar een cilindrisch gat in en wel zo dat je een servetring overhoudt die 6 cm dik is. Vraag: wat is het volume van die servetring. NB de as van de cilinder gaat door het middelpunt van de bol; de servetring is dus echt een ring.

Je kunt dat volume op een paar manieren bepalen. Leerlingen die wiskunde B hebben gedaan weten hoe ze volumes van wentellichamen met behulp van integralen uit kunnen rekenen. Als je toevallig wat formules voor volumes van bepaalde delen van een bol paraat hebt reken je het ook zo uit. Wat opvalt als je zo’n weg volgt is dat de straal van de bol er kennelijk niet toe doet. Dit is waarom Ionica dit een krankzinnig raadsel noemt: het lijkt of er een gegeven ontbreekt, namelijk de straal van de bol, maar achteraf blijkt dat niet zo te zijn. Dat had je dan op het spoor van een oplossing `uit-het-hoofd’ kunnen zetten: in de vraag wordt de straal niet genoemd, dan doe die er kennelijk niet toe, maar dan kan ik ook een heel makkelijk geval bekijken.

Maar goed, waarom doet die straal er niet toe?
De leerlingen die het volume met behulp van integralen gaan uitrekenen zien het meteen: in de integraal die uitgerekend moet worden is de straal van de bol verdwenen (hij komt twee keer in het kwadraat voor, maar die kwadraten worden van elkaar afgetrokken).
En wat doet iemand die niet kan integreren? Die gebruikt iets dat teruggaat tot Archimedes maar dat tegenwoordig bekend staat als het principe van Cavalieri.
Leg zo’n servetring op de grond en doe alsof het middelpunt van de bol op hoogte 0 ligt (zie het plaatje in de column). Snij nu de servetring met een wiskundige kaasschaaf in flinterdunne plakken. Bekijk de ringvormige plak op hoogte z. Die ring heeft een buitenstraal en een binnenstraal. De buitenstraal is gelijk aan √(R2-z2) en de binnenstraal is gelijk aan de straal van de cilinder en die is gelijk aan √(R2-32). De oppervlakte van de ring is dan gelijk aan π(R2-z2-R2+32) ofwel π(32-z2) en dat is onafhankelijk van de straal van de bol.
Het principe van Cavalieri zegt, toegespitst op dit geval: als je twee lichamen hebt van gelijke hoogte en op elke hoogte zijn de oppervlakten van de horizontale plakken uit de lichamen even groot dan zijn de volumes van de lichamen aan elkaar gelijk.

En daarom kun je volstaan met het probleem in een heel speciaal geval op te lossen.

Bijna twintig jaar geleden stond in Pythagoras een stukje over de manier waarop Cavalieri zijn principe gebruikte om oppervlakten te bepalen.

Het klinkt wel mooi dat principe van Cavalieri maar klopt het eigenlijk wel? Hoe zou je het bewijzen? Dan komen we vanzelf uit op de vraag wat `volume’ eigenlijk betekent. Na veel nadenken is daar een werkbare definitie van gegeven en gaat het bewijs van het principe via de integraal die de wiskunde-B-ers voor de oplossing van Gardner’s probleem zouden kunnen gebruiken.

Mathsplaining

Gisteren gebruikte Aafke Romeijn in een tweet de frase mansplaining tot de macht oneindig. Ik kon nog net virtueel op mijn tong bijten maar nu moet ik toch even aan het mathsplainen.

Dat “tot de macht oneindig” klinkt wel indrukwekkend maar de kans is groot dat je er niet mee bereikt wat je wilt. Want wat betekent “tot de macht oneindig” eigenlijk? Wiskundig dan. En wat betekent “oneindig”? In dit geval zullen we het maar op het ∞ van de Analyse houden. Dan betekent “mainsplaining tot de macht oneindig” niets anders dan “de limiet van mainsplainingn voor n naar ∞”.

OK, maar dan moeten we dus eerst betekenis hechten aan “mansplaining-kwadraat”,
“mansplaining tot de derde macht”, … en vervolgens het gedrag van die machten van mansplaining bestuderen. Tsja, en dan komt het: hoe vermenigvuldig je mansplaining met zichzelf? Wiskundig betekent het woord niets maar we kunnen wat vermenigvuldigbare zaken langslopen.

We kunnen getallen vermenigvuldigen, en dus ook machtsverheffen. Maar dan komt het: is mansplaining negatief? Voor velen wel, denk ik. Jammer dan, maar dan is het kwadraat positief, de derde macht negatief, de vierde macht positief, … dan kun je het schudden: de limiet bestaat niet. Tenzij, …, je vindt dat mansplaining eigenlijk wel zielig is en weinig waarde heeft, zeg absolute waarde kleiner dan 1. Dan convergeren die machten naar 0 en dan is mansplaining tot de macht oneindig dus gelijk aan 0. Ik weet niet of dat Aafke Romeijn voor ogen stond.

Mansplaining is natuurlijk irreëel en irrationaal; dat lijkt wiskundig niet goed te gaan maar je kunt het interpreteren als “een complex getal met irrationaal argument”. Wiskundigen zien hier meteen een woordspeling: het woord `argument’ heeft in de wereld van de complexe getallen zijn geheel eigen betekenis. Dan leidt machtsverheffen tot een duizeligmakend ronddraaien; het hangt van de absolute waarde af of dit naar 0 convergeert, of naar ∞, of zonder limiet de eenheidscirkel blijft rondlopen. (Om andere mathsplainers de wind uit de zeilen te nemen: dat argument is een irrationaal veelvoud van π.)

Een mansplainer projecteert zijn eigen meningen en gedachten op hetgeen hij aan het mansplainen is. Dat leidt tot een wat merkwaardige situatie: wiskundig is het kwadraat van een projectie de projectie zelf. En dus is elke macht van mansplaining gelijk aan mansplaining zelf, met als conclusie dat mansplaining tot de macht oneindig gewoon mansplaining is. Eigenlijk wel een mooie conclusie: mansplaining is al zo erge flauwekul dat het zijn eigen oneindige macht is.

© 2011 TU Delft